Skip to main content
Log in

Overexpression of Zoysia ZjCIGR1 gene confers cold stress resistance to zoysiagrass

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Zoysia japonica Steud. is a warm-season lawn grass popular in Korea and elsewhere. They are cultivated in many places such as river banks, roadside, and play grounds. However, there still is a disadvantage of frequent mowing, and the grass grows poorly under the chilly conditions. To develop a grass variety that circumvents these drawbacks, we cloned the chitin-inducible gibberellins-responsive1 gene (CIGR1) from zoysiagrass. The full length of the ZjCIGR1 (Zj; Zoysia japonica Steud.) gene was obtained by 5′/3′ RACE PCR and the phylogenetic tree showed that it belonged to the CIGR1-subgroup in the PAT1-group of GRAS protein family. Expression of the ZjCIGR1 in wild-type plants was confirmed in roots, meristems, leaves, and flowers, especially high in the flowers. The transgenic zoysiagrass was confirmed by PCR using gene-specific primers, phosphinothricin-acetyl-transferase (PAT) strip test, and Southern blot analysis. ZjCIGR1-overexpressing plants acquired tolerance to cold stress displaying morphological phenotypes characteristic of stress resistance. In addition, in the transformants, expression of the ZjCIGR1 as well as cold-regulated (COR) gene was increased compared to the wild-type plants under cold stress condition. These results suggest that ZjCIGR1 gene is an important candidate for regulating cold stress resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Bar:

Phosphinothricin acetyltransferase

PPT:

Phosphinothricin

RT-PCR:

Reverse transcriptase polymerase chain reaction

T3 :

Transgenic third generation

ZjCIGR1 :

Zoysia japonica chitin-inducible gibberellin-responsive 1 gene

35S:

CaMV 35S promoter

References

  • Bae EJ, See KS, Kim DS, Han EH, Lee SM, Lee DW (2013) Sod production and current status of cultivation management in Korea. Weed Turf Sci 2:95–99

    Google Scholar 

  • Bae EJ, Han JJ, Lee KS, Park YB, Chi SM (2016) Growth characteristic of warm-season turfgrass in Saemangeum reclaimed land. KSOERT 19:13–23

    Google Scholar 

  • Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218:683–692

    CAS  PubMed  Google Scholar 

  • Bolle C, Koncz C, Chua NH (2000) PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes Dev 14:1269–1278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cabassa-Hourton C, Schertl P, Bordenave-Jacquemin B, Saadallah K, Guivarc’h A, Lebreton S, Planchais S, Klodmann J, Eubel H, Crilat E, Lefebvre-De Vos D, Ghelis T, Richard L, Abdelly C, Carol P, Braun HP, Savoure A (2016) Proteomic and functional analysis of proline dehydrogenase 1 link proline catabolism to mitochondrial electron transport in Arabidopsis thaliana. Biochem J 473:2623–2634

    CAS  PubMed  Google Scholar 

  • Chai B, Maqbool SB, Hajela RK, Green D, Vargas JM Jr, Warkentin D, Sabzikar R, Sticklen MB (2002) Cloning of a chitinase-like cDNA (hs2), its transfer to creeping bentgrass (Agrostis palustris Huds.) and development of brown patch (Rhizoctonia solani) disease-resistant transgenic lines. Plant Sci 163:183–193

    CAS  Google Scholar 

  • Cho KC, Han YJ, Kim SJ, Lee SS, Hwang OJ, Song PS, Kim JI (2011) Resistance to Rhizoctonia solani AG-2-2 (IIIB) in creeping bentgrass plants transformed with pepper esterase gene PepEST. Plant Pathol 1:1–9

    Google Scholar 

  • Chung SJ, Choi YI, Lee GJ (2013) Miscanthus EST-originated transcription factor WRKY expression in response to low temperature in warm-season turfgrasses. Weed Turf Sci 2:368–375

    Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  PubMed  Google Scholar 

  • Czikkel BE, Maxwell DP (2007) NtGRAS1, a novel stress-induced member of the GRAS family in tobacco, localizes to the nucleus. Plant Physiol 164:1220–1230

    CAS  Google Scholar 

  • Day RB, Shibuya N, Minami E (2003) Identification and characterization of two new members of the GRAS gene family in rice responsive to N-acetylchitooligosaccharide elicitor. Biochim Biophys Acta 1625:261–268

    CAS  PubMed  Google Scholar 

  • Day RB, Tanabe S, Koshioka M, Mitsui T, Itoh H, Ueguchi-Tanaka U, Matsuoka M, Kaku H, Shibuya N, Minami E (2004) Two rice GRAS family genes responsive to N-acetylchitooligosaccharide elicitor are induced by phytoactive gibberellins: evidence for cross-talk between elicitor and gibberellins signaling in rice cells. Plant Mol Biol 54:261–272

    CAS  PubMed  Google Scholar 

  • Fode B, Siemsen T, Thurow C, Weigel R, Gatz C (2008) The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress-inducible promoters. Plant Cell 20:3122–3135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu D, Tisserat NA, Xiao Y, Settle D, Muthukrishnan S, Liang GH (2005) Overexpression of rice TLPD34 enhances dollar-spot resistance in transgenic bentgrass. Plant Sci 168:671–680

    CAS  Google Scholar 

  • Fu D, Huang B, Xiao Y, Muthukrishnan S, Liang GH (2007) Overexpression of barley hva1 gene in creeping bentgrass for improving drought resistance. Plant Cell Rep 26:467–477

    CAS  PubMed  Google Scholar 

  • Ganeshan S, Vitamvas P, Flowler B, Chibbar RN (2008) Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat (Triticum aestivum L.) during an extended low temperature acclimation regimen. J Exp Bot 59:2393–2402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao MJ, Parkin IAP, Lydiate DJ, Hannoufa A (2004) An auxin-responsive SCARECROW-like transcriptional activator interacts with histone deacetylase. Plant Mol Biol 55:417–431

    CAS  PubMed  Google Scholar 

  • Greb T, Clarenz O, Schafer E, Muller D, Herrero R, Schmitz G, Theres K (2003) Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev 17:1175–118711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Bonos S, Meyer WA, Day PR, Belanger FC (2003) Transgenic creeping bentgrass with delayed dollar-spot symptoms. Mol Breed 11:95–101

    CAS  Google Scholar 

  • Hall BG (2013) Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30:1229–1235

    CAS  PubMed  Google Scholar 

  • Han YJ, Kim YM, Lee JY, Kim SJ, Cho KC, Chandrasekhar T, Song PS, Woo YM, Kim JI (2009) Production of purple-colored creeping bentgrass using maize transcription factor genes Pl and Lc through Agrobacterium-mediated transformation. Plant Cell Rep 28:397–406

    PubMed  Google Scholar 

  • Hao Y, Cui H (2012) SHORT-ROOT regulates vascular patterning, but not apical meristematic activity in the Arabidopsis root through cytokinin homeostasis. Plant Signal Behav 7:1–4

    Google Scholar 

  • Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736

    CAS  PubMed  Google Scholar 

  • Hou X, Yen L, Lee C, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signalling via competitive binding to JAZs. Dev Cell 19:884–894

    CAS  PubMed  Google Scholar 

  • Hung CJ, Ginzinger DG, Zamegar R, Kanauchi H, Wong MG, Kebeew E, Clark OH, Duh QY (2003) Expression of vascular endothelial growth factor-C in benign and malignant thyroid tumors. J Clin Endocrinol Metabol 88:3694–3699

    CAS  Google Scholar 

  • Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M (2002) The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14:57–70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalo P, Gleason C, Edward A, Marsh J, Mitra RM, Hirsch S, Jakab J, Sims S, Long SR, Rogers J, Kiss GB, Downie JA, Oldroyd GE (2005) Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 308:1786–1789

    CAS  PubMed  Google Scholar 

  • Kim SJ, Lee JY, Kim YM, Yang SS, Hwang OJ, Hong NJ, Kim KM, Lee HY (2007) Agrobacterium-mediated high-efficiency transformation of creeping bentgrass with herbicide resistance. J Plant Biol 50:577–585

    CAS  Google Scholar 

  • Koczula KM, Gallotta A (2016) Lateral flow assays. Essays Biochem 60:111–120

    PubMed  PubMed Central  Google Scholar 

  • Koizumi K, Hayashi T, Wu S, Gallagher KL (2012) The SHORT-ROOT protein acts as a mobile, dose-dependent signal in pattering the ground tissue. Proc Natl Acad Sci USA 109:13010–13015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kovi MR, Zhang Y, Yu S, Yang G, Yan W, Xing Y (2011) Candidacy of a chitin-inducible gibberellins-responsive gene for a major locus affecting plant height in rice that is closely linked to Green Revolution gene sd1. Theor Appl Genet 123:705–714

    CAS  PubMed  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748

    CAS  PubMed  Google Scholar 

  • Lee LY, Gelvin SB (2008) T-DNA binary vectors and systems. Plant Physiol 146:325–332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MH, Kim B, Song SK, Heo JO, Yu NI, Lee SA, Kim M, Kim DG, Sohn SO, Lim CE, Chang KS, Lee MM, Lim J (2008) Large-scale analysis of the GRAS gene family in Arabidopsis thaliana. Plant Mol Biol 67:659–670

    CAS  PubMed  Google Scholar 

  • Lee SY, Boon NJ, Webb AAR, Tanaka RJ (2016) Synergistic Activation of RD29A via integration of salinity stress and abscisic acid in Arabidopsis thaliana. Plant Cell Physiol 57:2147–2160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim PO, Kim Y, Breeze E, Koo JC, Woo HR, Ryu JS, Beynon J, Tabrett A, Buchanan-Wollaston V, Nam HG (2007) Overexpression of a chromatin architecture-controlling AT-hook protein extends leaf longevity and increases the post-harvest storage life of plants. Plant J 52:1140–1153

    CAS  PubMed  Google Scholar 

  • Lin C, Thomanshow M (1992) DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene cor15 and characterization of the COR15 polypeptide. Plant Physiol 99:519–525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas MD, Daviere JM, Falcon MR, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blazques MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellins control of cell elongation. Nature 451:480–486

    PubMed  Google Scholar 

  • Ma HS, Liang D, Shuai P, Xia XL, Yin WL (2010) The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J Exp Bot 61:4011–4019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaquchi-Shinozaki K (2004) Identification of cold-inducible down-stream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993

    CAS  PubMed  Google Scholar 

  • Miura K, Ohta M, Nakazawa M, Ono M, Hasegawa PM (2011) ICE Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance. Plant J 67:269–279

    CAS  PubMed  Google Scholar 

  • Msanne J, Lin J, Stone JM, Awada T (2011) Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta 234:97–107

    CAS  PubMed  Google Scholar 

  • Murase K, Hirano Y, Sun TP, Hakoshima T (2008) Gibberellin-induced DELLA recognition by the gibberellins receptor GID1. Nature 456:459–464

    CAS  PubMed  Google Scholar 

  • Nakayama K, Okawa K, Kakizaki T, Honma T, Itoh H, Inaba T (2007) Arabidopsis Cor15am is a chloroplast stromal protein that has cryoprotective activity and forms oligomers. Plant Physiol 144:513–523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA 104:21002–21007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa M, Kusano T, Katsumi M, Sano H (2000) Rice gibberellins-insensitive gene homolog, OsGAI, encodes a nuclear-localized protein capable of gene activation at transcriptional level. Gene 245:21–29

    CAS  PubMed  Google Scholar 

  • Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellins responses. Genes Dev 11:3194–3205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plett D, Safwat G, Gilliham M, Moller IS, Roy S, Shirley N, Jacobs A, Johnson A, Tester M (2010) Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1. PLoS ONE 5:e12571

    PubMed  PubMed Central  Google Scholar 

  • Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18:111–119

    CAS  PubMed  Google Scholar 

  • Qamar A, Mysore KS, Senthil-Kumar M (2015) Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens. Front Plant Sci 6:503–511

    PubMed  PubMed Central  Google Scholar 

  • Sanchez C, Vielba JM, Ferro E, Covelo G, Sole A, Abarca D, Mier BS, Diaz-Sala C (2007) Two SCARECROW-LIKE genes are induced in response to exogenous auxin in rooting-competent cuttings of distantly related forest species. Tree Physiol 27:1459–1470

    CAS  PubMed  Google Scholar 

  • Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K (1998) The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Plant Biol 96:290–295

    Google Scholar 

  • Silverstone AL, Ciampaglio CN, Sun T (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10:155–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song IJ, Sun HJ, Jeong OK, Yang DH, Jin ID, Kang HG, Ko SM, Kwon YI, Bae TW, Song PS, Lee HY (2017) Development of dwarf type cultivar ‘Halla Green 2’ in Zoysia japonica Steud. KSOBS 49:31–35

    Google Scholar 

  • Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA 95:14570–14575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Jones WT, Rikkerink HA (2012) GRAS proteins: the versatile roles of intrinsically disordered proteins in plant signaling. Biochemistry 442:1–12

    CAS  Google Scholar 

  • Tester M, Bacic A (2005) Abiotic stress tolerance in Grasses from model plants to crop plants. Plant Physiol 137:791–793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thalhammer A, Bryant G, Sulpice R, Hincha DK (2014) Disordered cold regulated 15 proteins protect chloroplast membranes during freezing through binding and folding, but do not stabilize chloroplast enzymes in vivo. Plant Physiol 166:190–201

    PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 25:4876–4882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian G, Wan P, Sun S, Li J, Chen M (2004) Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Mol Biol 54:519–532

    CAS  PubMed  Google Scholar 

  • Torres-Galea P, Hirtreiter B, Bolle C (2013) Two GRAS proteins, SCARECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANSDUCTION1, function cooperatively in phytochrome A signal transduction. Plant Physiol 161:291–304

    CAS  PubMed  Google Scholar 

  • Toyama K, Bae CB, Kang JG, Lim YP, Adachi T, Riu KZ, Song PS, Lee HY (2003) Production of herbicide-tolerant zoysiagrass by Agrobacterium-mediated transformation. Mol Cell 16:19–27

    CAS  Google Scholar 

  • Wang Y, Kausch AP, Chandlee JM, Luo H, Ruemmele BA, Browning M, Jackson N, Goldsmith MR (2003) Co-transfer and expression of chitinase, glucanase, and bar genes in creeping bentgrass for conferring fungal disease resistance. Plant Sci 165:497–506

    CAS  Google Scholar 

  • Wang J, Liu S, Li C, Wang T, Zhang P, Chen K (2017) PnLRR-RLK27, a novel leucine-rich repeats receptor-like protein kinase from the Antarctic moss Pohlia nutans, positively regulates salinity and oxidation-stress tolerance. PLoS ONE 12:e0172869

    PubMed  PubMed Central  Google Scholar 

  • Wei SJ, Du ZL, Gao F, Ke X, Li J, Liu JX, Zhou YJ (2015) Global transcriptome profiles of ‘Meyer’ zoysiagrass in response to cold stress. PLoS ONE 10(6):e0130053

    Google Scholar 

  • Woo HR, Kim JH, Nam HG, Lim PO (2004) The delayed leaf senescence mutants of Arabidopsis, ore1, ore3, and ore9 are tolerant to oxidative stress. Plant Cell Physiol 45:923–932

    CAS  PubMed  Google Scholar 

  • Xiang DJ, Hu XY, Zhang Y, Yin KD (2008) Over-expression of ICE1 gene in transgenic rice improves cold tolerance. Rice Sci 15:173–178

    Google Scholar 

  • Xu K, Chen S, Li T, Ma X, Liang X, Ding X, Liu H, Luo L (2015) OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biol 15:141–153

    PubMed  PubMed Central  Google Scholar 

  • Yang DH, Sun HJ, Goh CH, Song PS, Bae TW, Song IJ, Lim YP, Lim PO, Lee HY (2011) Cloning of Zoysia ZjLsL and its overexpression to induce axillary meristem initiation and tiller formation in Arabidopsis and bentgrass. Plant Biol 14:411–419

    PubMed  Google Scholar 

  • Yu TT, Skinner DZ, Liang GH, Trick HN, Huang B, Muthukrishnan S (2000) Agrobacterium-mediated transformation of creeping bentgrass using GFP as a reporter gene. Hereditas 133:229–233

    CAS  PubMed  Google Scholar 

  • Yuan Y, Fang L, Karungo SK, Zhang L, Gao Y, Li S, Xin H (2015) Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis. Plant Cell Rep 35:655–666

    PubMed  Google Scholar 

  • Zhong H, Boyland MG, Srinivasan C, Sticklen MB (1993) Transgenic plants of turfgrass (Agrostis palustris Huds.) from microprojectile bombardment of embryogenic callus. Plant Cell Rep 13:1–6 

    CAS  PubMed  Google Scholar 

  • Zhuang L, Yuan X, Chen Y, Xu B, Yang Z, Huang B (2015) PpCBF3 from cold-tolerant kentucky bluegrass involved in freezing tolerance associated with up-regulation of cold-related genes in transgenic Arabidopsis thaliana. PLoS ONE 10(7):e0132928

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A6A1A03012862), and by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agri-Bioindustry Technology Development Project, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA; Grant Number: 315025-3). The grantors had not played any role in writing this report or the decision to submit this article for publication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dae-Hwa Yang or Hyo-Yeon Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 497 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YJ., Yang, DH., Park, MY. et al. Overexpression of Zoysia ZjCIGR1 gene confers cold stress resistance to zoysiagrass. Plant Biotechnol Rep 14, 21–31 (2020). https://doi.org/10.1007/s11816-019-00570-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-019-00570-z

Keywords

Navigation