Skip to main content
Log in

Preparation of N and Eu doped TiO2 using plasma in liquid process and its photocatalytic degradation activity for diclofenac

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Pharmaceutical contaminants such as diclofenac (DCF) cannot be removed in existing wastewater treatment facilities; therefore, studies on application of new treatment processes and improvement of efficiency are required. In this study, a modified photocatalyst doped with nitrogen and europium was prepared and the performance of DCF was evaluated. A modified photocatalyst that responds to visible light was prepared by precipitating nitrogen and europium in a TiO2 powder using a plasma-in-liquid process (PLP). The performance of the photocatalyst was evaluated by a degradation experiment of diclofenac, a pharmaceutical ingredient. The dopant tended to precipitate in proportion to the amount of precursor added, but more nitrogen precipitated than europium even when the same amount was added. Nitrogen and europium were dispersed evenly throughout the TiO2 powder, and the Ti2p peak position of the modified TiO2 photocatalyst (MTP) coincided with bare TiO2, and europium precipitated in the form of Eu2O3. The bandgap energy of the MTPs was lower than that of unmodified TiO2 photocatalyst, but the MTP with only europium precipitated was the lowest. When a blue light source in the visible region was used, DCF decomposition by MTPs was improved by about 15 to 25 times compared to bare TiO2, and europium precipitation photocatalyst had the highest DCF decomposition characteristic. In addition, MTPs showed excellent reusability properties. Four kinds of by-products were detected in the decomposition process of DCF, and three decomposition pathways by reactions such as decarboxylation, C−N cleavage and hydroxylation were considered. The final mineralization to H2O, CO2, and chlorine occurs by hydroxylation, such as by OH, on the MTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Holloway, Expert Rev. Clin. Pharmacol., 4, 335 (2011).

    Article  PubMed  Google Scholar 

  2. J. Busfield, Soc. Sci. Med., 131, 199 (2015).

    Article  PubMed  Google Scholar 

  3. T. aus der Beek, F.-A. Weber, A. Bergmann, S. Hickmann, I. Ebert, A. Hein and A. Küster, Environ. Toxicol. Chem., 35, 823 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. G. E. Swan, R. Cuthbert, M. Quevedo, R. E. Green, D. J. Pain, P. Bartels, A. A. Cunningham, N. Duncan, A. A. Meharg, J. L. Oaks, J. P. Jones, S. Shultz, M.A. Taggart, G. Verdoorn and K. Wolter, Biol. Lett., 2, 279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. R. Triebskorn, H. Casper, A. Heyd, R. Eikemper, H.-R. Köhler and J. Schwaiger, Aquat. Toxicol., 68, 151 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. L. Zhang, Y. Liu and Y. Fu, RSC Adv., 10, 9907 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D. Kanakaraju, C. A. Motti, B. D. Glass and M. Oelgemoller, Environ. Chem., 11, 51 (2014).

    Article  CAS  Google Scholar 

  8. M. Irandost, R. Akbarzadeh, M. Pirsaheb, A. Asadi, P. Mohammadi and M. Sillanpaa, J. Mol. Liq., 291, 111342 (2019).

    Article  CAS  Google Scholar 

  9. X. Lu, Y. Shao, N. Gao, J. Chen, Y. Zhang, H. Xiang and Y. Guo, Ecotoxicol. Environ. Saf., 141, 139 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. S. J. Ki, K. J. Jeon, Y. K. Park, S. Jeong, H. Lee and S. C. Jung, Catal. Today, 293, 15 (2017).

    Article  CAS  Google Scholar 

  11. H. Lee, S. H. Park, Y. K. Park, S. J. Kim, S. G. Seo, S. J. Ki and S. C. Jung, Chem. Eng. J., 278, 259 (2015).

    Article  CAS  Google Scholar 

  12. S. C. Jung, Water Sci. Technol., 63, 1491 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. D. J. Lee, Y. K. Park, S. J. Kim, H. Lee and S. C. Jung, Korean J. Chem. Eng., 32, 1188 (2015).

    Article  CAS  Google Scholar 

  14. Z. Hua, Z. Dai, X. Bai, Z. Ye, H. Gua and X. Huang, J. Hazard. Mater., 293, 112 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. H. Lee, Y. K. Park, S. J. Kim, B. H. Kim and S. C. Jung, J. Ind. Eng. Chem., 32, 259 (2015).

    Article  CAS  Google Scholar 

  16. Y. Zhang and Q. Li, Solid State Sci., 16, 16 (2013).

    Article  CAS  Google Scholar 

  17. S. J. Ki, Y. K. Park, J. S. Kim, W. J. Lee, H. Lee and S. C. Jung, Chem. Eng. J., 377, 120087 (2019).

    Article  CAS  Google Scholar 

  18. H. Lee, I. S. Park, H. J. Bang, Y. K. Park, H. Kim, H. H. Ha, B. J. Kim and S. C. Jung, Appl. Surf. Sci., 471, 893 (2019).

    Article  CAS  Google Scholar 

  19. H. Lee, I. S. Park, H. J. Bang, Y. K. Park, E. B. Cho, B. J. Kim and S. C. Jung, Appl. Surf. Sci., 481, 625 (2019).

    Article  CAS  Google Scholar 

  20. S. C. Kim, Y. K. Park and S. C. Jung, Korean J. Chem. Eng., 38, 885 (2021).

    Article  CAS  Google Scholar 

  21. K. H. Chung, S. Jeong, H. Lee, S. J. Kim, K. J. Jeon, Y. K. Park and S. C. Jung, Int. J. Hydrogen Energy, 42, 24099 (2017).

    Article  CAS  Google Scholar 

  22. H. Lee, S. H. Park, S. G. Seo, S. J. Kim, S. C. Kim, Y. K. Park and S. C. Jung, Curr. Nanosci., 10, 7 (2014).

    Article  CAS  Google Scholar 

  23. S. C. Kim, Y. K. Park, B. H. Kim, H. Kim, W. J. Lee, H. Lee and S. C. Jung, Korean J. Chem. Eng., 35, 750 (2018).

    Article  CAS  Google Scholar 

  24. S. Jeong, K. H. Chung, H. Lee, H. Park, K. J. Jeon, Y. K. Park and S. C. Jung, ACS Sustain. Chem. Eng., 5, 3659 (2017).

    Article  CAS  Google Scholar 

  25. H. Lee, B. H. Kim, Y. K. Park, K. H. An, Y. J. Choi and S. C. Jung, Int. J. Hydrogen Energy, 41, 7582 (2016).

    Article  CAS  Google Scholar 

  26. M. K. Mun, W. O. Lee, J. W. Park, D. S. Kim, G. Y. Yeom and D. W. Kim, Appl. Sci. Converg. Technol., 26, 164 (2017).

    Article  Google Scholar 

  27. S. Pitchaimuthu, K. Honda, S. Suzuki, A. Naito, N. Suzuki, K. Katsumata, K. Nakata, N. Ishida, N. Kitamura, Y. Idemoto, T. Kondo, M. Yuasa, O. Takai, T. Ueno, N. Saito, A. Fujishima and C. Terashima, ACS Omega, 3, 898 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Y. K. Heo, M. A. Bratescu, T. Ueno and N. Saito, J. Appl. Phys., 116, 024302 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. D. Ihnatiuk, C. Tossi, I. Tittonen and O. Linnik, Catalysts, 10, 1074 (2020).

    Article  CAS  Google Scholar 

  30. S. Anwer, G. Bharath, S. Iqbal, H. Qian, T. Masood, K. Liao, W. J. Cantwell, J. Zhang and L. Zheng, Electrochim. Acta, 283, 1095 (2018).

    Article  CAS  Google Scholar 

  31. J. Tian, H. Gao, H. Kong, P. Yang, W. Zhang and J. Chu, Nanoscale Res. Lett., 8, 533 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. I. Camps, M. Borlaf, M. T. Colomer, R. Moreno, L. Duta, C. Nita, A. Perez del Pino, C. Logofatu, R. Serna and E. Gyorgy, RSC Adv., 7, 37643 (2017).

    Article  CAS  Google Scholar 

  33. D. Chen, Z. Jiang, J. Geng, Q. Wang and D. Yang, Ind. Eng. Chem. Res., 46, 2741 (2007).

    Article  CAS  Google Scholar 

  34. G. Yan, M. Zhang, J. Hou and J. Yang, Mater. Chem. Phys., 129, 553 (2011).

    Article  CAS  Google Scholar 

  35. T. T. Khan, G. A. K. M. R. Bari, H. J. Kang, T. G. Lee, J. W. Park, H. J. Hwang, S. M. Hossain, J. S. Mun, N. Suzuki, A. Fujishima, J. H. Kim, H. K. Shon and Y. S. Jun, Catalysts, 11, 109 (2021).

    Article  CAS  Google Scholar 

  36. W. Q. Liu, D. Wu, H. Chang, R. X. Duan, W. J. Wu, G. Amu, K. F. Chao, F. Q. Bao and O. Tegus, Nanomaterials, 8, 66 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  37. C. H. Zeng, K. Zheng, K. L. Lou, X. T. Meng, Z. Q. Yan, Z. N. Ye, R. R. Su and S. Zhong, Electrochim. Acta, 165, 396 (2015).

    Article  CAS  Google Scholar 

  38. S. A. Ansari, M. M. Khan, M. O. Ansari and M. H. Cho, New J. Chem., 40, 3000 (2016).

    Article  CAS  Google Scholar 

  39. M. Myilsamy, M. Mahalakshmi, N. Subha, A. Rajabhuvaneswari and V. Murugesan, RSC Adv., 6, 35024 (2016).

    Article  CAS  Google Scholar 

  40. L. Rizzo, S. Meric, D. Kassinos, M. Guida, F. Russo and V. Belgiorno, Water Res., 43, 979 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. B. Di Credico, R. Bellobono, M. D’Arienzo, D. Fumagalli, M. Redaelli, R. Scotti and F. Morazzoni, Int. J. Photoenergy, 2015, 919217 (2015).

    Article  CAS  Google Scholar 

  42. L. A. M. Lx, A. E. González S. Cipagauta-Díaz and R. Gómez, J. Chem. Technol. Biotechnol., 95, 2694 (2020).

    Google Scholar 

  43. J. Wang, D. N. Tafen, J. P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li and N. Wu, J. Am. Chem. Soc., 131, 12290 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. D. Chen, Q. Zhu, Z. Lv, X. Deng, F. Zhou and Y. Deng, Mater. Res. Bull., 47, 3129 (2012).

    Article  CAS  Google Scholar 

  45. S. Ramandi, M. H. Entezari and N. Ghows, Ultrason. Sonochem., 38, 234 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. T. P. Nguyen, Q. B. Tran, Q. V. Ly, L. T. Hai, D. T. Le, M. B. Tran, T. T. T. Ho, X. C. Nguyen, M. Shokouhimehr, D. V. N. Vo, S. S. Lam, H. T. Do, S. Y. Kim, T. V. Tung and Q. V. Le, Arab. J. Chem., 13, 8361 (2020).

    Article  CAS  Google Scholar 

  47. J. Xu, Y. Ao, D. Fu and C. Yuan, J. Colloid Interface Sci., 328, 447 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Z. Hu, X. Cai, Z. Wang, S. Li, Z. Wang and X. Xie, J. Hazard. Mater., 380, 120812 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. H. Shi, G. Zhou, Y. Liu, Y. Fu, H. Wang and P. Wu, RSC Adv., 9, 31370 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. I. Michael, A. Achilleos, D. Lambropoulou, V. Osorio Torrens, S. Pérez, M. Petrovic, D. Barceló and D. Fatta-Kassinos, Appl. Catal. B, 147, 1015 (2014).

    Article  CAS  Google Scholar 

  51. E. Nie, M. Yang, D. Wang, X. Yang, X. Luo and Z. Zheng, Chemosphere, 113, 165 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. H. Yu, E. Nie, J. Xu, S. Yan, W. J. Cooper and W. Song, Water Res., 47, 1909 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. S. Salaeh, D. J. Perisic, M. Biosic, H. Kusic, S. Babic, U. L. Stangar, D. D. Dionysiou and A. L. Bozic, Chem. Eng. J., 304, 289 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (2021R1A2C1006315).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Chul Jung.

Additional information

Co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Park, YK. & Jung, SC. Preparation of N and Eu doped TiO2 using plasma in liquid process and its photocatalytic degradation activity for diclofenac. Korean J. Chem. Eng. 39, 2080–2088 (2022). https://doi.org/10.1007/s11814-022-1093-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1093-4

Keywords

Navigation