Skip to main content
Log in

New frontiers of quantum computing in chemical engineering

  • Invited Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Quantum computing (QC) has the potential to strongly impact various sectors like finance, healthcare, communication, and technology by driving innovation across optimization and machine learning. Applications of QC in chemical, pharmaceutical, and biomolecular industries are also predicted to grow rapidly in the near future. Advancements in quantum hardware and algorithms have helped accelerate the widespread adoption of QC. Yet, despite the progress, several research gaps and challenges need to be addressed before leveraging QC for chemical engineering applications. Quantum computers offer higher computational power due to the exploitation of their quantum mechanical properties. However, not all computationally intractable problems can benefit from QC’s computational abilities. Achieving speedups over classical computing with quantum algorithms implemented on current quantum devices is possible for a few specific tasks. It is imperative to identify chemical engineering problems of practical relevance that may benefit from novel quantum techniques either with current quantum computers or of the future. Here, we present an introduction to basic concepts of QC while identifying the limitations of current quantum computers. A review of quantum algorithms that may benefit optimization and machine learning in chemical engineering with current quantum computers is also provided. This work also sets expectations for quantum devices of the future by exploring similar applications that may benefit from quantum algorithms implemented on such devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Nielsen and I. Chuang, Quantum computation and quantum information, American Association of Physics Teachers (2002).

  2. N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt and B. Lanyon, Phys. Rev. X, 8, 021012 (2018).

    CAS  Google Scholar 

  3. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. Brandao and D. A. Buell, Nature, 574, 505 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. A. Montanaro, npj Quantum Inf., 2, 15023 (2016).

    Article  Google Scholar 

  5. S. Imre and F. Balazs, Quantum computing and communications: an engineering approach, John Wiley & Sons (2005).

  6. R. Orús, S. Mugel and E. Lizaso, Rev. Phys., 4, 100028 (2019).

    Article  Google Scholar 

  7. M. Ying, Artif. Intell., 174, 162 (2010).

    Article  Google Scholar 

  8. R. P. Feynman, Simulating physics with computers, CRC Press (2018).

  9. P. Benioff, J. Stat. Phys., 22, 563 (1980).

    Article  Google Scholar 

  10. S. Gamble, in Frontiers of engineering: Reports on leading-edge engineering from the 2018 symposium, National Academies Press (2019).

  11. R. Raz and A. Tal, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (2019).

  12. M. Fingerhuth, T. Babej and P. Wittek, PloS One, 13, 0208561 (2018).

    Article  Google Scholar 

  13. G. Garnier, Front. Chem., 2, 17 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. L. T. Biegler, I. E. Grossmann and A. W. Westerberg, Systematic methods for chemical process design, Prentice Hall, Old Tappan, NJ (1997).

    Google Scholar 

  15. S. Dutta, Optimization in chemical engineering, Cambridge University Press (2016).

  16. V. Venkatasubramanian, AIChE J, 65, 466 (2019).

    Article  CAS  Google Scholar 

  17. C. Shang and F. You, Engineering, 5, 1010 (2019).

    Article  CAS  Google Scholar 

  18. J. Preskill, Quantum, 2, 79 (2018).

    Article  Google Scholar 

  19. S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin and X. Yuan, Rev. Mod. Phys., 92, 015003 (2020).

    Article  CAS  Google Scholar 

  20. T. T. Tran, M. Do, E. G. Rieffel, J. Frank, Z. Wang, B. O’Gorman, D. Venturelli and J. C. Beck, in Ninth annual symposium on combinatorial search (2016).

  21. S. Harwood, C. Gambella, D. Trenev, A. Simonetto, D. Bernal and D. Greenberg, IEEE Trans. Quantum Eng., 2, 1 (2021).

    Article  Google Scholar 

  22. A. Ajagekar, T. Humble and F. You, Comput. Chem. Eng., 132, 106630 (2020).

    Article  CAS  Google Scholar 

  23. B. Omer, Master’s thesis, Institute of Information Systems Technical University of Vienn na (2000).

  24. K. A. Britt and T. S. Humble, ACM J. Emerging Technol. Comput. Syst., 13, 1 (2017).

    Article  Google Scholar 

  25. D. E. Deutsch, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 425, 73 (1989).

    Article  Google Scholar 

  26. A. Adedoyin, J. Ambrosiano, P. Anisimov, A. Bärtschi, W. Casper, G. Chennupati, C. Coffrin, H. Djidjev, D. Gunter and S. Karra, arXiv preprint arXiv:1804.03719 (2018).

  27. C. C. McGeoch, Synthesis Lectures on Quantum Computing, 5, 1 (2014).

    Article  Google Scholar 

  28. D. J. Griffiths and D. F. Schroeter, Introduction to quantum mechanics, Cambridge University Press (2018).

  29. T. Albash and D. A. Lidar, Rev. Mod. Phys., 90, 015002 (2018).

    Article  Google Scholar 

  30. E. Farhi, J. Goldstone, S. Gutmann and M. Sipser, arXiv preprint quant-ph/0001106 (2000).

  31. D. Aharonov, W. Van Dam, J. Kempe, Z. Landau, S. Lloyd and O. Regev, SIAM Rev., 50, 755 (2008).

    Article  Google Scholar 

  32. T. Kadowaki and H. Nishimori, Phys. Rev. E, 58, 5355 (1998).

    CAS  Google Scholar 

  33. “Final Report: Emerging Technologies Subcommittee Quantum Information Science”, Homeland Security Advisory Council.

  34. D. M. Bacon, Decoherence, control, and symmetry in quantum computers, University of California, Berkeley (2001).

  35. Y. Xu, J. Chu, J. Yuan, J. Qiu, Y. Zhou, L. Zhang, X. Tan, Y. Yu, S. Liu and J. Li, Phys. Rev. Lett., 125, 240503 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. A. Pearson, A. Mishra, I. Hen and D. A. Lidar, npj Quantum Inf., 5, 1 (2019).

    Article  Google Scholar 

  37. D. Gottesman, arXiv preprint arXiv:0904.2557 (2009).

  38. K. L. Pudenz, T. Albash and D. A. Lidar, Nat. Commun., 5, 3243 (2014).

    Article  PubMed  Google Scholar 

  39. A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation and J. M. Gambetta, Phys. Rev. A, 100, 032328 (2019).

    Article  CAS  Google Scholar 

  40. D. Gottesman, Phys. Rev. A, 57, 127 (1998).

    Article  CAS  Google Scholar 

  41. S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis and H. Neven, Nat. Phys., 14, 595 (2018).

    Article  CAS  Google Scholar 

  42. L. T. Biegler and I. E. Grossmann, Comput. Chem. Eng., 28, 1169 (2004).

    Article  CAS  Google Scholar 

  43. J. A. Kelner and D. A. Spielman, in Proceedings of the thirty-eighth annual ACM symposium on Theory of computing (2006).

  44. I. E. Grossmann and A. W. Westerberg, AIChE J., 46, 1700 (2000).

    Article  CAS  Google Scholar 

  45. K. C. Furman and N. V. Sahinidis, Comput. Chem. Eng., 25, 1371 (2001).

    Article  CAS  Google Scholar 

  46. I. E. Grossmann and L. T. Biegler, Comput. Chem. Eng., 28, 1193 (2004).

    Article  CAS  Google Scholar 

  47. E. Bernstein and U. Vazirani, SIAM J. Comput., 26, 1411 (1997).

    Article  Google Scholar 

  48. S. S. Rao, Engineering optimization: Theory and practice, John Wiley & Sons (2019).

  49. S. Aaronson, SIGACT News, 36, 30 (2005).

    Article  Google Scholar 

  50. R. G. Parr, Density functional theory of atoms and molecules, in Horizons of quantum chemistry, Springer (1980).

  51. T. Helgaker, W. Klopper and D. P. Tew, Mol. Phys., 106, 2107 (2008).

    Article  CAS  Google Scholar 

  52. Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová, I. D. Kivlichan, T. Menke, B. Peropadre and N. P. Sawaya, Chem. Rev., 119, 10856 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik and J. L. O’brien, Nat. Commun., 5, 1 (2014).

    Article  Google Scholar 

  54. B. Bauer, S. Bravyi, M. Motta and G. K.-L. Chan, Chem. Rev, 120, 12685 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. M. P. Andersson, M. N. Jones, K. V. Mikkelsen, F. You and S. S. Mansouri, Curr. Opin. Chem. Eng, 36, 100754 (2022).

    Article  Google Scholar 

  56. B. Alidaee, G. A. Kochenberger and A. Ahmadian, Int. J. Syst. Sci., 25, 401 (1994).

    Article  Google Scholar 

  57. J. Krarup and P. M. Pruzan, Computer-aided layout design, in Mathematical programming in use, Springer (1978).

  58. G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lü, H. Wang and Y. Wang, J. Comb. Optim., 28, 58 (2014).

    Article  Google Scholar 

  59. A. Ajagekar and F. You, Energy, 179, 76 (2019).

    Article  Google Scholar 

  60. A. Lucas, Front. Phys., 2, 5 (2014).

    Article  Google Scholar 

  61. E. Farhi, J. Goldstone and S. Gutmann, arXiv preprint arXiv:1411. 4028 (2014).

  62. G. G. Guerreschi and A. Y. Matsuura, Sci. Rep., 9, 1 (2019).

    Article  CAS  Google Scholar 

  63. R. Patton, C. Schuman and T. Potok, Quantum Inf. Process, 18, (2019).

  64. J. Li and R. R. Rhinehart, Comput. Chem. Eng., 22, 427 (1998).

    Article  CAS  Google Scholar 

  65. J. H. Lee, J. Shin and M. J. Realff, Comput. Chem. Eng., 114, 111 (2018).

    Article  CAS  Google Scholar 

  66. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe and S. Lloyd, Nature, 549, 195 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. E. Aïmeur, G. Brassard and S. Gambs, Machine learning in a quantum world. In conference of the canadian society for computational studies of intelligence, Springer, Berlin, Heidelberg (2006).

    Google Scholar 

  68. E. Farhi and H. Neven, arXiv preprint arXiv:1802.06002 (2018).

  69. N. Wiebe, A. Kapoor and K. Svore, arXiv preprint arXiv:1401.2142 (2014).

  70. M. Schuld, R. Sweke and J. J. Meyer, Phys. Rev. A, 103, 032430 (2021).

    Article  CAS  Google Scholar 

  71. L. Chiang, B. Lu and I. Castillo, Annu. Rev. Chem. Biomol. Eng., 8, 63 (2017).

    Article  PubMed  Google Scholar 

  72. I. Cong, S. Choi and M. D. Lukin, Nat. Phys., 15, 1273 (2019).

    Article  CAS  Google Scholar 

  73. A. Ajagekar and F. You, Comput. Chem. Eng., 143, 107119 (2020).

    Article  CAS  Google Scholar 

  74. A. W. Harrow, A. Hassidim and S. Lloyd, Phys. Rev. Lett., 103, 150502 (2009).

    Article  PubMed  Google Scholar 

  75. M. Schuld, I. Sinayskiy and F. Petruccione, Phys. Rev. A, 94, 022342 (2016).

    Article  Google Scholar 

  76. Y. Liu and S. Zhang, Theor. Comput. Sci., 657, 38 (2017).

    Article  Google Scholar 

  77. S. Aaronson, Nat. Phys., 11, 291 (2015).

    Article  CAS  Google Scholar 

  78. C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio and P. Coles, Bull. Am. Phys. Soc., 65 (2020).

    Google Scholar 

  79. C. C. Chang, A. Gambhir, T. S. Humble and S. Sota, Sci. Rep., 9, 1 (2019).

    Article  Google Scholar 

  80. R. Y. Li, R. Di Felice, R. Rohs and D. A. Lidar, npj Quantum Inf., 4, 14 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. S. Lloyd and C. Weedbrook, Phys. Rev. Lett., 121, 040502 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. M. H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy and R. Melko, Phys. Rev. X, 8, 015002 (2018).

    Google Scholar 

  83. C. Zoufal, A. Lucchi and S. Woerner, Quantum Mach. Intell., 3, 7 (2021).

    Article  Google Scholar 

  84. A. Ajagekar and F. You, Appl. Energy, 303, 117628 (2021).

    Article  Google Scholar 

  85. S.Y.-C. Chen, C.-H. H. Yang, J. Qi, P.-Y. Chen, X. Ma and H.-S. Goan, IEEE Access, 8, 141007 (2020).

    Article  Google Scholar 

  86. J. Preskill, Fault-tolerant quantum computation, in Introduction to quantum computation and information, World Scientific (1998).

  87. E. T. Campbell, B. M. Terhal and C. Vuillot, Nature, 549, 172 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, S. Boixo, M. Broughton, B. B. Buckley and D. A. Buell, Science, 369, 1084 (2020).

    Article  CAS  Google Scholar 

  89. L. Zhou, S.-T. Wang, S. Choi, H. Pichler and M. D. Lukin, Phys. Rev. X, 10, 021067 (2020).

    Article  CAS  Google Scholar 

  90. F. G. Brandao and K. M. Svore, in Annual Symposium on Foundations of Computer Science (FOCS), IEEE (2017).

  91. J. van Apeldoorn and A. Gilyén, arXiv preprint arXiv:1804.05058 (2018).

  92. L. K. Grover, in Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing, Association for Computing Machinery, Philadelphia, Pennsylvania, USA (1996).

    Google Scholar 

  93. S. Lloyd, M. Mohseni and P. Rebentrost, arXiv preprint arXiv: 1307.0411 (2013).

  94. N. Wiebe, D. Braun and S. Lloyd, Phys. Rev. Lett., 109, 050505 (2012).

    Article  PubMed  Google Scholar 

  95. P. Rebentrost, M. Mohseni and S. Lloyd, Phys. Rev. Lett., 113, 130503 (2014).

    Article  PubMed  Google Scholar 

  96. Z. Zhao, J. K. Fitzsimons and J. F. Fitzsimons, Phys. Rev. A, 99, 052331 (2019).

    Article  CAS  Google Scholar 

  97. S. Lloyd, M. Mohseni and P. Rebentrost, Nat. Phys., 10, 631 (2014).

    Article  CAS  Google Scholar 

  98. D. Dong, C. Chen, H. Li and T. Tarn, IEEE Trans. Syst. Man Cybern. Part B Cybern., 38, 1207 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengqi You.

Additional information

Professor Fengqi You is currently Roxanne E. and Michael J. Zak Professor in Cornell University, Ithaca, New Yok, USA. He also serves as Chair of PhD Studies in Cornell Systems Engineering, Associate Director of Cornell Energy Systems Institute, and Associate Director of Cornell Institute for Digital Agriculture. He has published more than 200 refereed articles in journals such as Science, Nature Sustainability, Nature Communications, and Science Advances, and has an h-index of 65. He is an award-winning scholar and teacher, and has received over 15 major awards over the past five years from from the American Institute of Chemical Engineers (AIChE), American Chemical Society (ACS), Royal Society of Chemistry (RSC), American Society for Engineering Education (ASEE), and American Automatic Control Council (AACC) to recognize his research and educational accomplishments, in addition to a number of best paper awards. He is currently an editor of Computers & Chemical Engineering, an associate editor of AAAS journal Science Advances and of IEEE Transactions on Control Systems Technology, a consulting editor of AIChE Journal, and an editorial board member of ACS Sustainable Chemistry & Engineering, Industrial & Engineering Chemistry Research, IEEE Quantum Computing Newsletter, PRX Energy, etc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajagekar, A., You, F. New frontiers of quantum computing in chemical engineering. Korean J. Chem. Eng. 39, 811–820 (2022). https://doi.org/10.1007/s11814-021-1027-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-1027-6

Keywords

Navigation