Skip to main content
Log in

Solid-state reaction between MoS2 and MoO3 in a fluidized bed reactor

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

MoO2 was produced by mixing MoS2 and MoO3 via a solid-state reaction in a fluidized bed reactor. The basic fluidization data were acquired by monitoring the minimum fluidization velocity of MoS2 and MoO3. The conversion rate of MoS2 and MoO3 to MoO2 was derived based on the solid-state reactions carried out for 1 h at various stoichiometric ratios. This study confirmed that the optimal stoichiometric ratio of MoS2 and MoO3 was 1.0: 6. The conversion rate at the optimum stoichiometric ratio was studied by varying the reaction temperature. A conversion rate of 99% was achieved when the reaction temperature and superficial gas velocity were 973 K and 0.3 m/s, respectively. Detailed analysis of the final product after the solid-state reaction was by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectrometry (EDS) and X-ray diffraction (XRD), to determine the shape, structure, and diffraction patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Lee, K.S. Lee, Y.O. Park and K.Y. Lee, Chem. Eng. J., 380, 122454 (2020).

    Article  CAS  Google Scholar 

  2. J. R. Lee, N. Hasolli, K. S. Lee, K. Y. Lee and Y. O. Park, Korean J. Chem. Eng., 36, 1548 (2019).

    Article  CAS  Google Scholar 

  3. J. R. Lee, K.S. Lee, N. Hasolli, Y.O. Park, K. Y. Lee and Y. H. Kim, Chem. Eng. Process., 149, 107856 (2020).

    Article  CAS  Google Scholar 

  4. F. Podczeck, Powder Technol., 93, 47 (1997).

    Article  CAS  Google Scholar 

  5. M. Cho, ISIJ International, 42, 33 (2002).

    Article  Google Scholar 

  6. J. R. Lee and Y. H. Kim, Chem. Eng. Res. Des., 168, 193 (2021).

    Article  CAS  Google Scholar 

  7. X. Zhang, Y. Han, Y. Sun and Y. Li, Powder Technol., 352, 16 (2019).

    Article  CAS  Google Scholar 

  8. Y. Jin, H. Lu, X. Guo and X. Gong, Powder Technol., 376, 468 (2020).

    Article  CAS  Google Scholar 

  9. W. Ge, Q. Chang, C. Li and J. Wang, Chem. Eng. Sci., 198, 198 (2019).

    Article  CAS  Google Scholar 

  10. G. H. Zhang, J. J. Li, L. Wang and K. C. Chou, Int. J. Refract. Met. Hard Mater., 69, 180 (2017).

    Article  CAS  Google Scholar 

  11. B. Zhang, N. Kobayashi and Y. Itaya, Powder Technol., 343, 309 (2019).

    Article  CAS  Google Scholar 

  12. G. S. Kim, Y. J. Lee, D. G. Kim and Y. D. Kim, J. Alloys Compd., 454, 327 (2008).

    Article  CAS  Google Scholar 

  13. G. S. Kim, H. G. Kim, D. G. Kim, S. T. Oh, M. J. Suk and Y. D. Kim, J. Alloys Compd., 469, 401 (2009).

    Article  CAS  Google Scholar 

  14. C. Raymond, U.S. Patent, 3,336,100 (1967).

  15. K. Manukyan, D. Davtyan, J. Bossert and S. Kharatyan, Chem. Eng. J., 168, 925 (2011).

    Article  CAS  Google Scholar 

  16. B. S. Kim, E. Y. Kim, H. S. Jeon, H. I. Lee and J. C. Lee, Mater. Trans., 49, 2147 (2008).

    Article  CAS  Google Scholar 

  17. J. D. Lessard, L. N. Shekhter, D. G. Gribbin and L. F. McHugh, JOM, 65, 1566 (2013).

    Article  CAS  Google Scholar 

  18. L. Wang, C. Y. Bu, G. H. Zhang, T. Jiang and K. C. Chou, JOM, 68, 1031 (2016).

    Article  CAS  Google Scholar 

  19. H. K. Bizhaem and H. B. Tabrizi, Powder Technol., 237, 14 (2013).

    Article  CAS  Google Scholar 

  20. D. Barletta and M. Poletto, Powder Technol., 225, 93 (2012).

    Article  CAS  Google Scholar 

  21. J. R. Lee, N. Hasolli, S. M. Jeon, K. S. Lee, K. D. Kim, Y. H. Kim, K. Y. Lee and Y. O. Park, Korean J. Chem. Eng., 35, 2321 (2018).

    Article  CAS  Google Scholar 

  22. N. Mostoufi, Chem. Eng. Sci., 229, 116029 (2021).

    Article  CAS  Google Scholar 

  23. D. Geldart, Powder Technol., 7, 285 (1973).

    Article  CAS  Google Scholar 

  24. L. Wei, Y. Lu, J. Zhu, G. Jiang, J. Hu and H. Teng, Korean J. Chem. Eng., 35, 2117 (2018).

    Article  CAS  Google Scholar 

  25. H. Y. Lin, Y. W. Chen and C. Li, Thermochim. Acta, 400, 61 (2003).

    Article  CAS  Google Scholar 

  26. M. Ishida and C. Y. Wen, AIChE J., 14, 311 (1968).

    Article  CAS  Google Scholar 

  27. A. K. Marnani, A. Bück, S. Antonyuk, B. van Wachem, D. Thévenin and J. Tomas, Processes, 7, 439 (2019).

    Article  CAS  Google Scholar 

  28. Y. Zhou, H. Ding, J. Zhu and Y. Shao, Chem. Eng. J., 394, 125039 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Korean Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20172010106310) and the BB21 + Project in 2021.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Ha Kim or Yong Sun Won.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JR., Kim, YH. & Won, Y.S. Solid-state reaction between MoS2 and MoO3 in a fluidized bed reactor. Korean J. Chem. Eng. 38, 1791–1796 (2021). https://doi.org/10.1007/s11814-021-0797-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0797-1

Keywords

Navigation