Skip to main content

Advertisement

Log in

Thermally stable amine-functionalized silica sorbents using one-pot synthesis method for CO2 capture at low temperature

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Amine-functionalized silica sorbents have been widely investigated for post-combustion CO2 capture at low temperature. In previous studies, amine-functionalized silica sorbents were prepared using a synthetic hierarchically porous silica, which is not commercially available in large quantities, because porous silica support structures strongly influence CO2 capture performance. Here, we propose a feasible and facile fabrication method for amine-functionalized silica sorbents using 3-aminopropyltrimethoxy silane (APTS) and fumed silica (FS), where APTS serves as both an active material and a binder. The APTS-functionalized FS sorbents have large amounts of active amino groups and porous structures and demonstrate good multicycle stability with excellent CO2 capture performance. In addition, cetyltrimethylammonium bromide was found to improve the diffusion pathway of CO2, leading to enhanced CO2 capture capacity because of the suppression of excessive condensation during preparation. Therefore, the APTS-functionalized FS sorbents could be cost- and energy-efficiently prepared using a novel one-pot synthesis method; the resulting sorbents exhibit excellent CO2 capture performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Aaron and C. Tsouris, Sep. Sci. Technol., 40, 321 (2005).

    Article  CAS  Google Scholar 

  2. D. J. Hofmann, J. H. Butler and P. P. Tans, Atmos. Environ., 43, 2084 (2009).

    Article  CAS  Google Scholar 

  3. D. W. Keith, Science, 325, 1654 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. L. V. Alexander, X. Zhang, T.C. Peterson, J. Caesar, B. Gleason, A. M. G. Klein Tank, M. Haylock, D. Collins, B. Trewin, F. Rahimzadeh, A. Tagipour, K. Rupa Kumar, J. Revadekar, G. Griffiths, L. Vincent, D. B. Stephenson, J. Burn, E. Aguilar, M. Brunet, M. Taylor, M. New, P. Zhai, M. Rusticucci and J. L. Vazquez-Aguirre, J. Geophys. Res. Atmos., 111, D05109 (2006).

    Google Scholar 

  5. N. P. Gillett, V. K. Arora, G.M. Flato, J. F. Scinocca and K. von Salzen, Geophys. Res. Lett., 39, L01704 (2012).

    Article  Google Scholar 

  6. B. D. Santer, J. F. Painter, C. A. Mears, C. Doutriaux, P. Caldwell, J. M. Arblaster, P. J. Cameron-Smith, N. P. Gillett, P. J. Gleckler, J. Lanzante, J. Perlwitz, S. Solomon, P. A. Stott, K. E. Taylor, L. Terray, P. W. Thorne, M. F. Wehner, F. J. Wentz, T. M. L. Wigley, L. J. Wilcox and C.-Z. Zou, Proc. Natl. Acad. Sci. U.S.A., 110, 26 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. T. R. Anderson, E. Hawkins and P. D. Jones, Endeavour, 40, 178 (2016).

    Article  PubMed  Google Scholar 

  8. E. W. Maibach, J. M. Kreslake, C. Roser-Renouf, S. Rosenthal, G. Feinberg and A. A. Leiserowitz, Ann. Global Health, 81, 396 (2015).

    Article  Google Scholar 

  9. J. M. Melillo, T. Richmond and G. Yohe, Third National Climate Assessment, U.S. Global Change Research Program (2014).

  10. J. L. Schnell, M. J. Prather, B. Josse, V. Naik, L. W. Horowitz, G. Zeng, D. T. Shindell and G. Faluvegi, Geophys. Res. Lett., 43, 3509 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. D. P. Hagewiesche, S. S. Ashour, H. A. Al-Ghawas and O. C. Sandall, Chem. Eng. Sci., 50, 1071 (1995).

    Article  CAS  Google Scholar 

  12. M. Mavroudi, S. Kaldis and G. Sakellaropoulos, Fuel, 82, 2153 (2003).

    Article  CAS  Google Scholar 

  13. A. Sayari, Y. Belmabkhout and R. Serna-Guerrero, Chem. Eng. J., 171, 760 (2011).

    Article  CAS  Google Scholar 

  14. G. Sethia and A. Sayari, Carbon, 93, 68 (2015).

    Article  CAS  Google Scholar 

  15. C. Shen, C. A. Grande, P. Li, J. Yu and A. E. Rodrigues, Chem. Eng. J., 160, 398 (2010).

    Article  CAS  Google Scholar 

  16. R. V. Siriwardane, M.-S. Shen, E. P. Fisher and J. A. Poston, Energy Fuels, 15, 279 (2001).

    Article  CAS  Google Scholar 

  17. Y. Takamura, S. Narita, J. Aoki, S. Hironaka and S. Uchida, Sep. Purif. Technol., 24, 519 (2001).

    Article  CAS  Google Scholar 

  18. J. A. Thompson, J. T. Vaughn, N. A. Brunelli, W. J. Koros, C. W. Jones and S. Nair, Micropor. Mesopor. Mater., 192, 43 (2014).

    Article  CAS  Google Scholar 

  19. Z. Yong, V. Mata and A. E. Rodrigues, J. Chem. Eng. Data, 45, 1093 (2000).

    Article  CAS  Google Scholar 

  20. Z. Yong, V. Mata and A. E. Rodrigues, Ind. Eng. Chem. Res., 40, 204 (2001).

    Article  CAS  Google Scholar 

  21. Z. Yong, V. Mata and A. R. E. Rodrigues, Sep. Purif. Technol., 26, 195 (2002).

    Article  CAS  Google Scholar 

  22. Z. Yong, V. G. Mata and A. E. Rodrigues, Adsorption, 7, 41 (2001).

    Article  CAS  Google Scholar 

  23. Z. Yong and A. R. E. Rodrigues, Energy Convers. Manage., 43, 1865 (2002).

    Article  CAS  Google Scholar 

  24. Y. Zou and A. E. Rodrigues, Ads. Sci. Technol., 19, 255 (2001).

    Article  CAS  Google Scholar 

  25. C. Chen, S.-T. Yang, W.-S. Ahn and R. Ryoo, Chem. Commun., 24, 3627 (2009).

    Article  CAS  Google Scholar 

  26. A. Goeppert, S. Meth, G. S. Prakash and G. A. Olah, Energy Environ. Sci., 3, 1949 (2010).

    Article  CAS  Google Scholar 

  27. G. Qi, Y. Wang, L. Estevez, A. K. Switzer, X. Duan, X. Yang and E. P. Giannelis, Chem. Mater., 22, 2693 (2010).

    Article  CAS  Google Scholar 

  28. J. Wang, D. Long, H. Zhou, Q. Chen, X. Liu and L. Ling, Energy Environ. Sci., 5, 5742 (2012).

    Article  CAS  Google Scholar 

  29. X. Xu, C. Song, J. M. Andresen, B. G. Miller and A. W. Scaroni, Energy Fuels, 16, 1463 (2002).

    Article  CAS  Google Scholar 

  30. X. Xu, C. Song, B. G. Miller and A. W. Scaroni, Ind. Eng. Chem. Res., 44, 8113 (2005).

    Article  CAS  Google Scholar 

  31. A. C. Chang, S. S. Chuang, M. Gray and Y. Soong, Energy Fuels, 17, 468 (2003).

    Article  CAS  Google Scholar 

  32. S. W. Delaney, G. P. Knowles and A. L. Chaffee, Fuel Chem. Div. Preprints, 47, 65 (2002).

    CAS  Google Scholar 

  33. M. W. Hahn, M. Steib, A. Jentys and J. A. Lercher, J. Phys. Chem. C, 119, 4126 (2015).

    Article  CAS  Google Scholar 

  34. P. J. Harlick and A. Sayari, Ind. Eng. Chem. Res., 45, 3248 (2006).

    Article  CAS  Google Scholar 

  35. P. J. Harlick and A. Sayari, Ind. Eng. Chem. Res., 46, 446 (2007).

    Article  CAS  Google Scholar 

  36. G. P. Knowles, S. W. Delaney and A. L. Chaffee, Ind. Eng. Chem. Res., 45, 2626 (2006).

    Article  CAS  Google Scholar 

  37. O. Leal, C. Bolívar, C. Ovalles, J. J. García and Y. Espidel, Inorg. Chim. Acta, 240, 183 (1995).

    Article  CAS  Google Scholar 

  38. C. Chen, J. Kim and W.-S. Ahn, Korean J. Chem. Eng., 31, 1919 (2014).

    Article  CAS  Google Scholar 

  39. J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, D. O’Hare and Z. Zhong, Energy Environ. Sci., 7, 3478 (2014).

    Article  CAS  Google Scholar 

  40. W. Choi, K. Min, C. Kim, Y. S. Ko, J. W. Jeon, H. Seo, Y.-K. Park and M. Choi, Nat. Commun., 7, 12640 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D. V. Quang, T. A. Hatton and M. R. Abu-Zahra, Ind. Eng. Chem. Res., 55, 7842 (2016).

    Article  CAS  Google Scholar 

  42. I. Rahman, M. Jafarzadeh and C. Sipaut, Ceram. Int., 35, 1883 (2009).

    Article  CAS  Google Scholar 

  43. K. S. Sing, J. Porous Mater., 2, 5 (1995).

    Article  CAS  Google Scholar 

  44. N. Mittal, A. Samanta, P. Sarkar and R. Gupta, Energy Sci. Eng., 3, 207 (2015).

    Article  CAS  Google Scholar 

  45. H.-J. Kim, W. Chaikittisilp, K.-S. Jang, S.A. Didas, J.R. Johnson, W. J. Koros, S. Nair and C. W. Jones, Ind. Eng. Chem. Res., 54, 4407 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20182010600530).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soo Chool Lee or Jae Chang Kim.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, S.B., Chae, H.J., Kim, T.Y. et al. Thermally stable amine-functionalized silica sorbents using one-pot synthesis method for CO2 capture at low temperature. Korean J. Chem. Eng. 37, 2317–2325 (2020). https://doi.org/10.1007/s11814-020-0655-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0655-6

Keywords

Navigation