Skip to main content

Advertisement

Log in

Simultaneous NO/SO2 removal by coconut shell char/CaO from calcium looping in a fluidized bed reactor

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A simultaneous NOx/SO2 removal system using bio-char and CaO combined with calcium looping process for CO2 capture was proposed. The simultaneous NO/SO2 removal performance of coconut shell char/CaO experienced CO2 capture cycles was investigated in a fluidized bed reactor. The effects of reaction temperature, mass ratio of CaO to coconut shell coke, CaO particle size and number of CO2 capture cycles from calcium looping process were discussed. The NO removal efficiency of char is improved under the catalysis of CaO. The reaction temperature plays an important role in the simultaneous NO/SO2 removal. Coconut shell char/CaO achieve the highest NO and SO2 removal efficiencies at 825 oC, which are 98% and 100%, respectively. The mass ratio of CaO to coconut shell char of 60: 100 is a good choice for the simultaneous NO/SO2 removal. Smaller CaO particle size contributes to higher NO and SO2 removal efficiencies of coconut shell char/CaO. The NO and SO2 removal efficiencies of coconut shell char and cycled CaO from calcium looping declined slightly with the number of CO2 capture cycles. In addition, the Ca-based materials balance in process of simultaneous NOx/SO2 removal combined with calcium looping is given. The novel simultaneous NO/SO2 removal method using bio-char and cycled CaO from calcium looping process appears promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

η NO :

NO removal efficiency [%]

η SO2 :

SO2 removal efficiency [%]

η CO2 :

CO2 capture efficiency of CaO [%]

CNO(0):

initial NO concentration [ppm]

CNO(t):

NO concentration in the exhaust gas from BFBR at t [ppm]

CSO2(0):

initial SO2 concentration [ppm]

CSO2(t):

SO2 concentrationin the exhaust gas from BFBR at t [ppm]

CCO2(0):

initial CO2 concentration [%]

CCO2(t):

CO2 concentration in the exhaust gas from BFBR at t [%]

Peq :

CO2 equilibrium partial pressure [bar]

T:CO2 :

equilibrium temperature [K]

F0 :

flow rate of fresh CaCO3 [kmol/s]

FR :

flow rate of recycled sorbent excluding fresh makeup [kmol/s]

Xave :

average carbonation conversion of CaO

F0/FR :

ratio of fresh sorbent flow rate to recycled sorbent flow rate

(F{itCO}+FCO2)/FR :

ratio of total CO2 flow rate introduced into the carbonator to recycled sorbent flow rate

FS,B :

flow rate of sorbent introduced into the boiler [kmol/s]

FS,R :

flow rate of sorbent introduced into the NOx/SO2 removal reactor [kmol/s]

F’S,B :

total flow rate of CaO and CaSO4 discharged from the boiler [kmol/s]

F’S,R :

total flow rate of CaO and CaSO4 discharged from the NOx/SO2 removal reactor [kmol/s]

FCO2 :

flow rate of CO2 produced by coal combustion entering the carbonator [kmol/s]

FSO2 :

flow rate of SO2 produced by coal combustion [kmol/s]

α :

molar ratio of Ca/S in the boiler

β :

molar ratio of Ca/S in the NOx/SO2 removal reactor

ECO2 :

CO2 capture efficiency in the carbonator [%]

ESO2 :

SO2 removal efficiency in the boiler [%]

FNO :

flow rate of NO produced by coal combustion [kmol/s]

FCO :

flow rate of CO produced by char [kmol/s]

Fd :

flow rate of sorbent discharged from the carbonator directly [kmol/s]

FO2 :

flow rate of O2 introduced into the calciner for fuel combustion [kmol/s]

Fair, coal :

flow rate of air for coal combustion in the boiler [kmol/s]

Fair :

flow rate of air for CO combustion in the carbonator [kmol/s]

Fgas1 :

flow rate of gas from boiler to NOx/SO2 removal reactor [kmol/s]

Fgas2 :

flow rate of gas from NOx/SO2 removal reactor to carbonator [kmol/s]

Fgas3 :

flow rate of gas emitted from the carbonator [kmol/s]

Fgas4 :

flow rate of gas emitted from the calciner [kmol/s]

References

  1. C. Manianglung, R. M. Pacia and Y. S. Ko, Korean J. Chem. Eng., 36, 1267 (2019).

    Article  CAS  Google Scholar 

  2. D. Kang and J.W. Lee, Appl. Catal. B, 186, 41 (2016).

    Article  CAS  Google Scholar 

  3. H. S. Lim, D. Kang and J.W. Lee, Appl. Catal. B, 202, 175 (2017).

    Article  CAS  Google Scholar 

  4. A. A. Khan, G. Halder and A. K. Saha, Korean J. Chem. Eng., 36, 1090 (2019).

    Article  CAS  Google Scholar 

  5. X. Ma, Y. Li, C. Chi, W. Zhang and Z. Wang, Korean J. Chem. Eng., 34, 580 (2017).

    Article  CAS  Google Scholar 

  6. K.-Y. Yoo, J.-S. Park and M.-J. Park, Korean J. Chem. Eng., 33, 1153 (2016).

    Article  CAS  Google Scholar 

  7. L. S. Fan, L. Zeng, W. Wang and S. Luo, Energy Environ. Sci., 5, 7254 (2012).

    Article  CAS  Google Scholar 

  8. T. Shimizu, T. Hirama, H. Hosoda, K, Kitano, M. Inagaki and K. Tejima, Chem. Eng. Res. Des., 77, 62 (1999).

    Article  CAS  Google Scholar 

  9. J.M. Valverde, Chem. Eng. J., 228, 1195 (2013).

    Article  CAS  Google Scholar 

  10. Y. Li, X. Ma, W. Wang, C. Chi, J. Shi and L. Duan, Chem. Eng. J., 316, 438 (2017).

    Article  CAS  Google Scholar 

  11. C.C. Cormos, Energy, 78, 665 (2014).

    Article  CAS  Google Scholar 

  12. H. Chen, N. Khalili and J. Li, Chem. Eng. J., 345, 321 (2018).

    Google Scholar 

  13. X. Li, W. Li, L. Wang and X. Chang, Coal Chem. Indus., 46, 17 (2018).

    Google Scholar 

  14. Y. Li, S. Buchi, J. And, J.R. Grace and C. J. Lim, Energy Fuels, 19, 1927 (2005).

    Article  CAS  Google Scholar 

  15. P. Sun, J. R. Grace, C. J. Lim and E. J. Anthony, Energy Fuels, 21, 163 (2007).

    Article  CAS  Google Scholar 

  16. H. Ryu, J. R. Grace and C. J. Lim, Energy Fuels, 20, 1621 (2006).

    Article  CAS  Google Scholar 

  17. L. Cong, Y. Zheng, J. Guo and B. Feng, Fuel, 127, 124 (2014).

    Article  CAS  Google Scholar 

  18. Q. Gu and X. Hu, Clean Coal Technol., 21, 77 (2015).

    CAS  Google Scholar 

  19. F. He, X. Deng and M. Chen, Fuel, 199, 523 (2017).

    Article  CAS  Google Scholar 

  20. W. Zhang, C. Lu, D. Chen, W. Deng, Q. Song, Y. Feng, W. Gong and J. Song, Clean Coal Technol., 25, 45 (2019).

    Google Scholar 

  21. Y. Xue, Y. Zhang, Y. Zhang, S. Zheng, Y. Zhang and W. Jin, Chem. Eng. J., 325, 544 (2017).

    Article  CAS  Google Scholar 

  22. B. Wang, S.-Y. Liu, F.-Y. Li and Z.-P. Fan, Korean J. Chem. Eng., 34, 717 (2017).

    Article  CAS  Google Scholar 

  23. S. Sun, J. Zhang, X. Hu, P. Qiu, J. Qian and Y. Qin, Korean J. Chem. Eng., 26, 554 (2009).

    Article  CAS  Google Scholar 

  24. Z. Zhao, J. Qiu, W. Li, H. Chen and B. Li, Fuel, 82, 949 (2003).

    Article  CAS  Google Scholar 

  25. F. Guo and W. C. Hecker, Symp. Combust., 27, 3085 (1998).

    Article  Google Scholar 

  26. Z. Zhao, W. Li and B. Li, Fuel, 81, 1559 (2002).

    Article  CAS  Google Scholar 

  27. S. Wang, J. Lu, Z. Hu and L. Huang, Huazhong Univ. Sci. Tech., 34, 21 (2006).

    CAS  Google Scholar 

  28. C. Wang, Y. Du and D. Che, Energy Fuels, 26, 7367 (2012).

    Article  CAS  Google Scholar 

  29. Z. Wen, Z. Wang, J. Zhou, Z. Zhou, J. Liu and K. Cen, Combust. Sci. Technol., 15, 505 (2009).

    CAS  Google Scholar 

  30. N. Deshpande, Calcium and iron oxide reactivity studies for chemical looping applications of clean energy conversion, Ph.D. Thesis, Columbus: Ohio State University (2015).

    Google Scholar 

  31. B. Zhong, W. Shi and W. Fu, Fuel Process. Technol., 79, 93 (2002).

    Article  CAS  Google Scholar 

  32. L. Dong, S. Gao, W. Song and G. Xu, Fuel Process. Technol., 88, 707 (2007).

    Article  CAS  Google Scholar 

  33. X. Wang, Y. Li, J. Shi, J. Zhao, Z. Wang, H. Liu and X. Zhou, Fuel Process. Technol., 180, 75 (2018).

    Article  CAS  Google Scholar 

  34. Y. Wang, H. Qin, F. Deng, S. Gong, R. Liu, X. Zheng and H. Fang, World Trop Agric. Inf., 491, 5 (2018).

    Google Scholar 

  35. Z. Zhong, G. Yu, W. Mo, C. Zhang, H. Huang, S. Li, M. Gao, X. Lu, B. Zhang and H. Zhu, RSC Adv., 9, 10425 (2019).

    Article  CAS  Google Scholar 

  36. A. Wilk, L. Więcław-Solny, A. Tatarczuk, A. Krótki, T. Spietz and T. Chwoła, Korean J. Chem. Eng., 34, 2275 (2017).

    Article  CAS  Google Scholar 

  37. M. Cui, J. Zhou, X. Zhang, T. Li and F. Niu, Clean Coal Technol., 25, 131 (2019).

    Google Scholar 

  38. H.K. Nhan, M. Kwon, S. Kim and J. H. Park, J. Mech. Sci. Technol., 33, 2967 (2019).

    Article  Google Scholar 

  39. K. Dam-johansen, P. Hansen and S. Rasmussen, Appl. Catal. B, 5, 283 (1995).

    Article  CAS  Google Scholar 

  40. M. J. Illán-Gómez, A. Linares-Solano, L.R. Radovic and C. Salinas-Martínez, Energy Fuels, 36, 112 (1995).

    Article  Google Scholar 

  41. B. Ulusoy, H. Wu, W. Lin, O. Karlström, S. Li, W. Song, P. Glarborg and K. Dam-Johansen, Fuel, 236, 297 (2019).

    Article  CAS  Google Scholar 

  42. Y. Chen, Z. Guo and Z. Wang, J. Iron Steel Res., 21, 6 (2009).

    Google Scholar 

  43. C.T. Ratcliffe and G. Pap, Fuel, 59, 237 (1980).

    Article  CAS  Google Scholar 

  44. C. Ortiz, R. Chacartegui, J. M. Valverde, A. Alovisio and J.A. Becerra, Energy Convers. Manage., 149, 815 (2017).

    Article  CAS  Google Scholar 

  45. S.Q. Wang, M. Z. Liu, L. L. Sun and W. L. Cheng, Korean J. Chem. Eng., 34, 1882 (2017).

    Article  CAS  Google Scholar 

  46. Y. Yang and Y. Zhang, Appl. Energ. Technol., 3230, 32 (2013).

    Google Scholar 

  47. R.H. Borgwardt and K.R. Bruce, AIChE J., 32, 239 (1986).

    Article  CAS  Google Scholar 

  48. F. Guo and W. C. Hecker, Symp. Combust., 26, 2251 (1996).

    Article  Google Scholar 

  49. X. Ma, Y. Li, L. Duan, E. Anthony and H. Liu, Appl. Energy, 225, 402 (2018).

    Article  CAS  Google Scholar 

  50. H. Guo, X. Kou, Y. Zhao, S. Wang, Q. Sun and X. Ma, Chem. Eng. J., 334, 237 (2018).

    Article  CAS  Google Scholar 

  51. R. Sun, Y. Li, H. Liu, S. Wu and C. Lu, Appl. Energy, 89, 368 (2012).

    Article  CAS  Google Scholar 

  52. Y. Li, C. Zhao, H. Chen, Q. Ren and L. Duan, Energy, 36, 1590 (2011).

    Article  CAS  Google Scholar 

  53. L. Duan, W. Zhou, H. Li, X. Chen and C. Zhao, Korean J. Chem. Eng., 28, 1952 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China (51876105), the Fundamental Research Funds of Shandong University (2018JC039) and Joint Foundation of National Natural Science Foundation of China and Shanxi Province for coal-based low carbon (U1510130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjie Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Li, Y., Zhang, W. et al. Simultaneous NO/SO2 removal by coconut shell char/CaO from calcium looping in a fluidized bed reactor. Korean J. Chem. Eng. 37, 688–697 (2020). https://doi.org/10.1007/s11814-020-0483-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0483-8

Keywords

Navigation