Skip to main content
Log in

Facile synthesis of mesoporous Cr2O3 microspheres by spray pyrolysis and their photocatalytic activity: Effects of surfactant and pyrolysis temperature

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Mesoporous Cr2O3 microspheres with improved pore structure were prepared by spray pyrolysis method. A precursor solution was nebulized into fine droplets containing chromium salt and cetyltrimethylammonium bromide (CTAB), which were then pyrolyzed to Cr2O3/Cx microspheres inside a tubular furnace, followed by post-heat treatment to eliminate the carbonaceous material. The produced Cr2O3 particles had a diameter of 0.5-1 um and their textural properties could be tuned by adjusting CTAB amount and pyrolysis temperature. The synthesized Cr2O3 microspheres had the highest surface area and pore volume of 52 m2g-1 and 0.3 cm3 g-1, respectively, which surpass those of Cr2O3 prepared using a conventional method such as thermal decomposition, hydrothermal reduction or wet chemical synthesis. The photocatalytic degradation of methyl orange dye (MO) was tested on the prepared Cr2O3 particles. It was determined that the spray pyrolysis-derived Cr2O3 exhibited greater photocatalytic activity than that of commercial TiO2 and Cr2O3 particles prepared by the thermal decomposition of chromium salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Adepu, S. Goskula, S. Chirra, S. Siliveri, S. R. Gujjula and N. Venkatathri, J. Porous Mater., 26, 1259 (2019).

    Article  CAS  Google Scholar 

  2. S. Ayyappan, N. Ulagappan and C. N. R. Rao, J. Mater. Chem., 6, 1737 (1996).

    Article  CAS  Google Scholar 

  3. B. Bai, P. Wang, L. Wu, L. Yang and Z. Chen, Mater. Chem. Phys., 114, 26 (2009).

    Article  CAS  Google Scholar 

  4. Y. K. Bai, R. T. Zheng, Q. Gu, J. J. Wang, B. S. Wang, G. A. Cheng and G. Chen, J. Mater. Chem. A., 2, 12770 (2014).

    Article  CAS  Google Scholar 

  5. L. Chen, Z. Song, X. Wang, S. V. Prikhodko, J. Hu, S. Kodambaka and R. Richards, ACS Appl. Mater. Interfaces, 1, 1931 (2009).

    Article  CAS  Google Scholar 

  6. J. S. Cho, K. Y. Jung and Y. C. Kang, Phys. Chem. Chem. Phys., 17, 1325 (2015).

    Article  CAS  Google Scholar 

  7. Y.H. Cho, Y.N. Ko, Y.C. Kang, I.-D. Kim and J.-H. Lee, Sens. Actuator B-Chem., 195, 189 (2014).

    Article  CAS  Google Scholar 

  8. J. Choi, K. S. Yoo and J. Kim, Korean J. Chem. Eng., 35, 2480 (2018).

    Article  CAS  Google Scholar 

  9. N. A. Dhas, Y. Koltypin and A. Gedanken, Chem. Mater., 9, 3159 (1997).

    Article  CAS  Google Scholar 

  10. R. F. K. Gunnewiek, C. F. Mendes and R. H. G. A. Kiminami, Mater. Lett., 129, 54 (2014).

    Article  CAS  Google Scholar 

  11. L. Li, Z. F. Yan, G.Q. Lu and Z.H. Zhu, J. Phys. Chem. B., 110, 178 (2006).

    Article  CAS  Google Scholar 

  12. M. D. Lima, R. Bonadimann, M. J. de Andrade, J. C. Toniolo and C. P. Bergmann, J. Eur. Ceram. Soc., 26, 1213 (2006).

    Article  CAS  Google Scholar 

  13. H. Liu, X. Du, X. Xing, G. Wang and S. Z. Qiao, Chem. Commun., 48, 865 (2012).

    Article  CAS  Google Scholar 

  14. J. Ma, J. Ding, L. Yu, L. Li, Y. Kong and S. Komarneni, Appl. Clay Sci., 107, 85 (2015).

    Article  CAS  Google Scholar 

  15. M. Ocana, J. Eur. Ceram. Soc., 21, 931 (2001).

    Article  CAS  Google Scholar 

  16. S.-W. Park, O.-S. Joo, K-D. Jung, H. Kim and S.-H. Han, Korean J. Chem. Eng., 17, 719 (2000).

    Article  CAS  Google Scholar 

  17. Z. Pei, X. Gao, Y. Zhang and X. Lu, Mater. Lett., 116, 215 (2014).

    Article  CAS  Google Scholar 

  18. Z. Pei, H. Xu and Y. Zhang, J. Alloys Compd., 468, L5 (2009).

    Article  CAS  Google Scholar 

  19. Z. Pei, X. Zheng and Z. Li, J. Nanosci. Nanotechnol., 16, 4655 (2016).

    Article  CAS  Google Scholar 

  20. S. R. Pratap, M. Shyamsundar and S. Z. M. Shamshuddin, J. Porous Mater., 25, 1265 (2018).

    Article  CAS  Google Scholar 

  21. D. Raflud, Q. Xuanhui, L. Ping, L. Zhang, W. Qi, M.Z. Iqbal, M. Y. Raflque, M. H. Farooq and D. Islam-ud, J. Phys. Chem. C, 116, 11924 (2012).

    Google Scholar 

  22. M. Roy, S. Ghosh and M. K. Naskar, Mater. Chem. Phys., 159, 101 (2015).

    Article  CAS  Google Scholar 

  23. B. T. Sone, E. Manikandan, A. Gurib-Fakim and M. Maaza, Green. Chem. Lett. Rev., 9, 85 (2016).

    Article  CAS  Google Scholar 

  24. J. Su, H. Xue, M. Gu, H. Xia and F. Pan, Ceram. Int., 40, 15051 (2014).

    Article  CAS  Google Scholar 

  25. F. Subhan, S. Aslam, Z. Yan, M. Khan, U. J. Etim and M. Naeem, J. Porous Mater., 26, 1465 (2019).

    Article  CAS  Google Scholar 

  26. S. C. Tsai, Y. L. Song, C. S. Tsai, C. C. Yang, W. Y. Chiu and H. M. Lin, J. Mater. Sci., 39, 3647 (2004).

    Article  CAS  Google Scholar 

  27. T. Valdes-Solis and A. B. Fuertes, Mater. Res. Bull., 41, 2187 (2006).

    Article  CAS  Google Scholar 

  28. N. Venugopal, W-S. Kim and K. Y. Sohn, Korean J. Chem. Eng., 36, 1536 (2019).

    Article  CAS  Google Scholar 

  29. T. K. Vo, W-S. Kim, S.-S. Kim, K. S. Yoo and J. Kim, Energy Confers. Manag., 158, 92 (2018).

    Article  CAS  Google Scholar 

  30. D. Vollath, D. V. Szabó and J. O. Willis, Mater. Lett., 29, 271 (1996).

    Article  CAS  Google Scholar 

  31. C. Yeom and Y. Kim, Korean J. Chem. Eng., 35, 587 (2018).

    Article  CAS  Google Scholar 

  32. Y. Zhang, Y. Xu, T. Li and Y. Wang, Particuology10, 46 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the Engineering Research Center of Excellence Program of the Korea Ministry of Science, ICT & Future Planning (MSIP)/National Research Foundation of Korea (NRF) (Grant NRF-2014R1A5A1009799).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsoo Kim.

Supporting Information

11814_2020_475_MOESM1_ESM.pdf

Facile synthesis of mesoporous Cr2O3 microspheres by spray pyrolysis and their photocatalytic activity: Effects of surfactant and pyrolysis temperature

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, T.K., Kim, J. Facile synthesis of mesoporous Cr2O3 microspheres by spray pyrolysis and their photocatalytic activity: Effects of surfactant and pyrolysis temperature. Korean J. Chem. Eng. 37, 571–575 (2020). https://doi.org/10.1007/s11814-020-0475-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0475-8

Keywords

Navigation