Skip to main content
Log in

Microwave assistant production of a high performance adsorbent from rice husk

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Microwave radiation was used for synthesis of an adsorbent using rice husk. The activation of the rice husk sample was performed by H3PO4 and 6 min of the microwave radiation with power 700 W. The synthesized adsorbent was characterized by SEM, FT-IR, BET and XRD techniques. These analyses showed the prepared adsorbent is an amorphous and mesoporous nano-adsorbent with BET surface area 276.43 m2/g. It has some aromatic groups and O-H, C-C, C-O and C-O bands in its structure. Adsorption of alizarin yellow on the synthesized nano-adsorbent was investigated and the influences of adsorbent dosage (0.1–2g/L) and temperature (25–40 ·C) on dye removal from aqueous solution were investigated. The kinetic, equilibrium and thermodynamics studies of alizarin yellow removal from aqueous solution using the prepared adsorbent were carried out. The adsorption performance of alizarin yellow on the prepared adsorbent was compared with a commercial activated carbon. The importance of this study is in providing a condition for preparation of a low cost adsorbent with high adsorption capacity (712.63 mg/g) for alizarin yellow. The comparison of adsorption capacities of the prepared adsorbent from rice husk and other adsorbents proved it is a perfect adsorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Azeez, Tikrit J. Pure Sci., 17, 89 (2012).

    Google Scholar 

  2. S. Azizian, M. Haerifar and H. Bashiri, Chem. Eng. J., 146, 36 (2009).

    Article  CAS  Google Scholar 

  3. H. Bagheri and A. Mohammadi, J. Chromatogr. A, 1015, 23 (2003).

    Article  CAS  Google Scholar 

  4. H. Bashiri and S. Nesari, J. Appl. Chem., 14, 335 (2019).

    Google Scholar 

  5. O. Baytar, Ö. Şahin and C. Saka, Appl. Therm. Eng., 138, 542 (2018).

    Article  CAS  Google Scholar 

  6. O. Baytar, Ö. Şahin, C. Saka and S. Aĝrak, Anal. Lett., 51, 2205 (2018).

    Article  CAS  Google Scholar 

  7. S. S. C. Aharoni and E. Hoffer, J. Chem. Technol. Biotechnol., 29, 404 (1979).

    Article  CAS  Google Scholar 

  8. Y. Chen, S.-R. Zhai, N. Liu, Y. Song, Q.-D. An and X.-W. Song, Bioresour. Technol., 144, 401 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. S. Eris and H. Bashiri, Prog. React. Kind. Mech, 41, 109 (2016).

    Article  CAS  Google Scholar 

  10. H. Freundlich, Z. Phys. Chem, 57U, 385 (1907).

    Article  Google Scholar 

  11. M. B. Gholivand, Y. Yamini, M. Dayeni, S. Seidi and E. Tahmasebi, J. Environ. Chem. Eng., 3, 529 (2015).

    Article  CAS  Google Scholar 

  12. V. K. Gupta, A. Mittal, R. Jain, M. Mathur and S. Sikarwar, J. Colloid Interface Sci., 303, 80 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. B. H. Hameed, J. M. Salman and A. L. Ahmad, J. Hazard. Mater., 163, 121 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. M. Hejazifar, S. Azizian, H. Sarikhani, Q. Li and D. Zhao, J. Anal. Appl. Pyrolysis, 92, 258 (2011).

    Article  CAS  Google Scholar 

  15. Y.-S. Ho, J. Hazard. Mater;136, 681 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. S.-T. Hsu and T.-C. Pan, Bioresour. Technol., 98, 3617 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. M. S. İzgi, C. Saka, O. Baytar, G. Saraçoğlu and Ö. şahin, Anal. Lett., 52, 772 (2019).

    Article  CAS  Google Scholar 

  18. Y. Ji, T. Li, L. Zhu, X. Wang and Q. Lin, Appl. Surf. Sci., 254, 506 (2007).

    Article  CAS  Google Scholar 

  19. K. M. S. Khalil, O. A. S. Allam, M. Khairy, K. M. H. Mohammed, R. M. Elkhatib and M. A. Hamed, J. Mol. Liq., 247, 386 (2017).

    Article  CAS  Google Scholar 

  20. S. Lagergren, Kungliga Svenska Vetenskapsakademiens. Handlingar, 24, 1 (1898).

    Google Scholar 

  21. A. Lakshmi Narayanan, M. Dhamodaran and J. Samu Solomon, Int. J. Eng. Appl. Sci., 7, 36 (2015).

    Google Scholar 

  22. I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).

    Article  CAS  Google Scholar 

  23. L. Lin, S.-R. Zhai, Z.-Y. Xiao, Y. Song, Q.-D. An and X.-W. Song, Bioresour. Technol., 136, 437 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. J. A. Menéndez, A. Arenillas, B. Fidalgo, Y. Fernández, L. Zubizarreta, E. G. Calvo and J. M. Bermúdez, Fuel Process. Technol., 91, 1 (2010).

    Article  CAS  Google Scholar 

  25. E. Menya, P. W. Olupot, H. Storz, M. Lubwama and Y. Kiros, Chem. Eng. Res. Des., 129, 271 (2018).

    Article  CAS  Google Scholar 

  26. L. Muniandy, F. Adam, A. R. Mohamed and E.-P. Ng, Micropor. Mesopor. Mater., 197, 316 (2014).

    Article  CAS  Google Scholar 

  27. S. Parra, S. Elena Stanca, I. Guasaquillo and K. Ravindranathan Thampi, Appl. Catal. B, 51, 107 (2004).

    Article  CAS  Google Scholar 

  28. I. A. Rahman, B. Saad, S. Shaidan and E. S. Sya Rizal, Bioresour. Technol., 96, 1578 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. J. K. Ratan, M. Kaur and B. Adiraju, Materials Today: Proceedings, 5, 3334 (2018).

    CAS  Google Scholar 

  30. O. Redlich and D. L. Peterson, J. Phys. Chem., 63, 1024 (1959).

    Article  CAS  Google Scholar 

  31. M. Salman, M. Athar, U. Shafique, M. Imran, R. Rehman, A. Akram and S. Zulfiqar Ali, Turkish J. Eng. Env. Sci., 35, 209 (2011).

    CAS  Google Scholar 

  32. M. Sarabadan, H. Bashiri and S. M. Mousavi, Clay Miner., 1, in press (2019).

  33. M. Sarabadan, H. Bashiri and S. M. Mousavi, Korean J. Chem. Eng., 36, 1575 (2019).

    Article  CAS  Google Scholar 

  34. Y. M. Sharif, C. Saka, O. Baytar and Ö. Sahin, Anal. Lett., 51, 2733 (2018).

    Article  CAS  Google Scholar 

  35. R. Sips, J. Chem. Phys., 16, 490 (1948).

    Article  CAS  Google Scholar 

  36. R. Sivaraj, C. Namasivayam and K. Kadirvelu, Waste Manage. (Oxford), 21, 105 (2001).

    Article  CAS  Google Scholar 

  37. N. Soltani, A. Bahrami, M. I. Pech-Canul and L. A. González, Chem. Eng. J., 264, 899 (2015).

    Article  CAS  Google Scholar 

  38. S. Somasundaram, K. Sekar, V. K. Gupta and S. Ganesan, J. Mol. Liq., 177, 416 (2013).

    Article  CAS  Google Scholar 

  39. M. J. Temkin and V. Pyzhev, Acta Physicochim. URSS, 12, 327 (1940).

    CAS  Google Scholar 

  40. C. A. Toles, W. E. Marshall, L. H. Wartelle and A. McAloon, Bioresour. Technol., 75, 197 (2000).

    Article  CAS  Google Scholar 

  41. H. N. Tran, S.-J. You and H.-P. Chao, J. Environ. Chem. Eng., 4, 2671 (2016).

    Article  CAS  Google Scholar 

  42. M. Ugurlu, A. Gürses and M. Açikyildiz, Micropor. Mesopor. Mater., 111, 228 (2008).

    Article  CAS  Google Scholar 

  43. J.-Y. Yang, X.-Y. Jiang, F.-P. Jiao and J.-G. Yu, Appl. Surf. Sci., 436, 198 (2018).

    Article  CAS  Google Scholar 

  44. J. Zeldowitsch, Acta Physicochim. URSS, 1, 449 (1934).

    Google Scholar 

  45. J. Zhang, H. Fu, X. Lv, J. Tang and X. Xu, Biomass Bioenergy, 35, 464 (2011).

    Article  CAS  Google Scholar 

  46. Y. Zhou, L. Zhang and Z. Cheng, J. Mol. Liq., 212, 739 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to University of Kashan for supporting this work by Grant No. (682211/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadis Bashiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashiri, H., Nesari, S. & Sarabadan, M. Microwave assistant production of a high performance adsorbent from rice husk. Korean J. Chem. Eng. 37, 240–248 (2020). https://doi.org/10.1007/s11814-019-0446-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0446-0

Keywords

Navigation