Skip to main content

Advertisement

Log in

An experiment and model of ceramic (alumina) hollow fiber membrane contactors for chemical absorption of CO2 in aqueous monoethanolamine (MEA) solutions

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The chemical absorption of CO2 in a monoethanolamine (MEA) solution by a ceramic hollow fiber membrane contactor (HFMC) was investigated experimentally and numerically to obtain the best compromise between the mass transfer coefficient and structural characteristics such as membrane pore size and porosity. The mathematical model derived is based on the three resistances in the resistance-in-series model. The accuracy of the numerical simulation was verified quantitatively by the experimental data obtained in this study. A good agreement between experimental and computational results was found with an average absolute deviation (AAD) between observed data and predicted values of 2.86%. In addition, the effects of the operating condition (i.e., gas and liquid flow rates) on the mass transfer coefficients for ceramic HFMC systems were also studied, revealing that the membrane and gas-phase mass transfer resistances were dominant factors in the overall mass transfer. In conclusion, the present study suggests that the membrane structure plays a very important role in the optimization of HFMC performance. In fact, the best results were obtained with an intermediate range of the pore size between 102 and 104 nm, corresponding to the best compromise between performance (i.e., overall mass transfer coefficient) and applicability (i.e., breakthrough pressure).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

cross section area [m2]

B:

Boltzmann’s constant

\({{\rm{C}}_{C{O_2}}},\;{\rm{C}}_{C{O_2}}^*\) :

CO2 concentration in solvent [mol/m2]

\(C_{CO_2,MEA}\) :

concentration of CO2 in MEA solution [mol/m3]

C MEA :

molarity of MEA solution [mol/m3]

de :

hydraulic diameter [m]

di, do, dlm :

hollow fiber outer, inner and log mean diameters [m]

dp :

membrane pore diameter [nm]

\({{\rm{D}}_{C{O_2},\;gas}}\) :

bulk diffusion coefficient [m2/s]

\({{\rm{D}}_{C{O_2},\;{H_2}O}}\) :

diffusion coefficient of CO2 in MEA solution [m2/s]

\({{\rm{D}}_{C{O_2},\;m}}\) :

effective membrane diffusion coefficient [m2/s]

\({{\rm{D}}_{C{O_2},\;MEA}}\) :

diffusion coefficient of CO2 in the MEA solution [m2/s]

DKn :

Knudsen diffusion coefficient [m2/s]

DMEA :

diffusion coefficient of MEA in aqueous MEA solution [m2/s]

\({{\rm{D}}_{{N_2}O,\;{H_2}O}}\) :

diffusion coefficient of N2O in MEA solution [m2/s]

\({{\rm{D}}_{{N_2}O,\;MEA}}\) :

diffusion coefficient of N2O in MEA solution [m2/s]

E:

enhancement factor

Exp:

experimental data

E :

infinite enhancement factor

Gz:

Graetz number

H:

Henry’s law constant [Pa·m3/mol]

Ha:

Hatta number

\({{\rm{J}}_{C{O_2}}}\) :

mass transfer flux [mol/m2·s−1]

k:

reaction rate constant of CO2-MEA reaction [m3/mol·s]

kg, km, kl :

mass transfer coefficient in gas, membrane, and liquid phase [m/s]

K L :

overall mass transfer coefficient [m/s]

\({{\rm{M}}_{C{O_2}}}\), \({{\rm{M}}_{{N_2}}}\) :

molecular weight of CO2 and N2

L:

fiber length [m]

\({{\rm{p}}_{C{O_2},\,g}}\) :

partial pressure of the CO2 in the gas phase [Pa]

P:

pressure [Pa]

ΔP:

breakthrough pressure [Pa]

rp :

membrane pore radius [m]

Re:

Reynolds number

Sc:

Schmidt number

Sh:

Sherwood number

Sim:

Simulated data

T:

temperature [K]

T*:

dimensionless temperature

U:

wetted perimeter [m]

vi :

liquid velocity [m/s]

vR :

stoichiometric coefficient

\({{\rm{x}}_{{H_2}O}},\;{{\rm{x}}_{MEA}}\) :

mole fraction of H2O and MEA in the solution

γ :

surface tension

δ :

membrane thickness [m]

ε :

membrane porosity

\({\varepsilon _{C{O_2}}},\;{\varepsilon _{{N_2}}}\) :

characteristic energy of CO2 and N2

θ :

contact angle

μ :

gas viscosity [kg/m·s]

ρ :

gas density [kg/m3]

\({\sigma _{C{O_2}}},\;{\sigma _{{N_2}}}\) :

characteristic length of CO2 and N2 [Å]

τ m :

tortuosity

∅:

packing density

Ω D :

diffusion collision integral

References

  1. Y. Kim, J. Ryu and I. Lee, Korean Chem. Eng. Res., 47(5), 531 (2009).

    Article  CAS  Google Scholar 

  2. G. Bakeri, M. Rezaei-DashtArzhandi, A. F. Ismail, T. Matsuura, M. S. Abdullah and N. B. Cheer, Korean J. Chem. Eng., 34(1), 160 (2017).

    Article  CAS  Google Scholar 

  3. N. Nabian, A. A. Ghoreyshi, A. Rahimpour and M. Shakeri, Korean J. Chem. Eng., 32(11), 2204 (2015).

    Article  CAS  Google Scholar 

  4. D. Jeong, M. Yun, J. Oh, I. Yum and Y. Lee, Korean J. Chem. Eng., 27(3), 939 (2010).

    Article  CAS  Google Scholar 

  5. B. Ozturk and R. Hughes, Chem. Eng. J., 195-196, 122 (2012).

    Article  CAS  Google Scholar 

  6. S. Boributh, W. Rongwong, S. Assabumrungrat, N. Laosiripojana and R. Jiraratananon, J. Membr. Sci., 401-402, 175 (2012).

    Article  CAS  Google Scholar 

  7. S. A. Hashemifard, T. Matsuura, A. F. Ismail, M. R. D. Arzhandi, D. Rana and G. Bakeri, Chem. Eng. J., 281, 970 (2015).

    Article  CAS  Google Scholar 

  8. K. Li, J. Kong and X. Tan, Chem. Eng. Sci., 55, 5579 (2000).

    Article  CAS  Google Scholar 

  9. S. Atchariyawut, C. Feng, R. Wang, R. Jiraratananon and D. T. Liang, J. Membr. Sci., 285, 272 (2006).

    Article  CAS  Google Scholar 

  10. G. Bakeri, A. F. Ismail, D. Rana and T. Matsuura, Chem. Eng. J., 198-199, 327 (2012).

    Article  CAS  Google Scholar 

  11. F. Korminouri, M. Rahbari-Sisakht, T. Matsuura and A. F. Ismail, Chem. Eng. J., 264, 453 (2015).

    Article  CAS  Google Scholar 

  12. L. Wang, Z. Zhang, B. Zhao, H. Zhang, X. Lu and Q. Yang, Sep. Purif. Technol., 116, 300 (2013).

    Article  CAS  Google Scholar 

  13. H. J. Lee, E. Magnone and J. H. Park, J. Membr. Sci., 494, 143 (2015).

    Article  CAS  Google Scholar 

  14. S. Koonaphapdeelert, Z. Wu and K. Li, Chem. Eng. Sci., 64, 1 (2009).

    Article  CAS  Google Scholar 

  15. H. J. Lee and J. H. Park, J. Membr. Sci., 518, 79 (2016).

    Article  CAS  Google Scholar 

  16. M. C. Yang and E. L. Cussler, AIChE J., 32, 1910 (1986).

    Article  CAS  Google Scholar 

  17. H. Kreulen, C. A. Smolders, G. F. Versteeg and W. P. M. van Swaaij, J. Membr. Sci., 78, 197 (1993).

    Article  CAS  Google Scholar 

  18. G. F. Versteeg and W. P. M. van Swaalj, J. Chem. Eng. Data, 33, 29 (1988).

    Article  CAS  Google Scholar 

  19. J. J. Ko, T. C. Tsai, C. Y. Lin, H. M. Wang and M. H. Li, J. Chem. Eng. Data, 46, 160 (2000).

    Article  Google Scholar 

  20. A. Gabelman and S.-T. Hwang, J. Membr. Sci., 159, 61 (1999).

    Article  CAS  Google Scholar 

  21. J. L. Li and B. H. Chen, Sep. Purif. Technol., 41, 109 (2005).

    Article  CAS  Google Scholar 

  22. S. Boributh, S. Assabumrungrat, N. Laosiripojana and R. Jiraratananon, J. Membr. Sci., 380, 21 (2011).

    Article  CAS  Google Scholar 

  23. B. E. Poling, J. M. Prausnitz and J. P. O’connell, Properties of gases and liquids, fifth Ed., McGraw-Hill (2004).

  24. M. C. Yang and E. L. Cussler, AIChE J., 32, 1910 (1986).

    Article  CAS  Google Scholar 

  25. M. J. Costello, A. G. Fane, P. A. Hogan and R. W. Schofield, J. Membr. Sci., 80, 1 (1993).

    Article  CAS  Google Scholar 

  26. P. Côté, J. L. Bersillon and A. Huyard, J. Membr. Sci., 47, 91 (1989).

    Article  Google Scholar 

  27. R. Prasad and K. K. Sirkar, AIChE J., 34, 177 (1988).

    Article  CAS  Google Scholar 

  28. W. J. DeCoursey, Chem. Eng. Sci., 29, 1867 (1974).

    Article  CAS  Google Scholar 

  29. P. M. M. Blauwhoff, G. F. Versteef and W. P. M. van Swaaij, Chem. Eng. Sci., 38, 1411 (1983).

    Article  CAS  Google Scholar 

  30. E. D. Snijder, M. J. M. te Riele, G. F. Versteeg and W. P. M. van Swaaij, J. Chem. Eng. Data, 38, 475 (1993).

    Article  CAS  Google Scholar 

  31. S. Khaisri, D. deMontigny, P. Tontiwachwuthikul and R. Jiraratananon, J. Membr. Sci., 347, 228 (2010).

    Article  CAS  Google Scholar 

  32. A. Penttilä, C. Dell’Era, P. Uusi-Kyyny and V. Alopaeus, Fluid Phase Equilib., 311, 59 (2011).

    Article  Google Scholar 

  33. V. Y. Dindore, D. W. F. Brilman, F. H. Geuzebroek and G. F. Versteeg, Sep. Purif. Technol., 40, 133 (2004).

    Article  CAS  Google Scholar 

  34. S. A. Jayarathna, A. Weerasooriya, S. Dayarathna, D. A. Eimer and M. C. Melaaen, J. Chem. Eng. Data, 58, 986 (2013).

    Article  CAS  Google Scholar 

  35. M. Calderer, I. Jubany, R. Pérez, V. Martí and J. de Pablo, Chem. Eng. J., 165, 2 (2010).

    Article  CAS  Google Scholar 

  36. J. H. Kim, S. K. Hong and S. J. Park, Korean Chem. Eng. Res., 45, 619 (2007).

    CAS  Google Scholar 

  37. E. Quijada-Maldonado, T. A. M. Aelmans, G. W. Meindersma and A. B. de Haan, Chem. Eng. J., 223, 287 (2013).

    Article  CAS  Google Scholar 

  38. A. Aboudheir, P. Tontiwachwuthikul, A. Chakma and R. Idem, Chem. Eng. Sci., 58, 5195 (2003).

    Article  CAS  Google Scholar 

  39. W. Rongwong, R. Jiraratananon, and S. Atchariyawut, Sep. Purif. Technol., 69, 118 (2009).

    Article  CAS  Google Scholar 

  40. Y. Kim and S. Yang, Sep. Purif. Technol., 21, 101 (2000).

    Article  CAS  Google Scholar 

  41. Y. Lv, X. Yu, S.-T. Tu, J. Yan and E. Dahlquist, Appl. Energy, 112, 755 (2013).

    Article  Google Scholar 

  42. Y. Lv, X. Yu, J. Jia, S.-T. Tu, J. Yan and E. Dahlquist, Appl. Energy, 90(1), 167 (2012).

    Article  CAS  Google Scholar 

  43. S. Yan, M. Fang, W. Zhang, S. Wang, Z. Xu, Z. Luo and K. Cen, Fuel Process. Technol., 88, 501 (2007).

    Article  CAS  Google Scholar 

  44. W. Rongwong, S. Assabumrungrat and R. Jiraratananon, J. Membr. Sci., 429, 396 (2013).

    Article  CAS  Google Scholar 

  45. S. Atchariyawut, R. Jiraratananon and R. Wang, J. Membr. Sci., 304, 163 (2007).

    Article  CAS  Google Scholar 

  46. R. Faiz and M. Al-Marzouqi, J. Membr. Sci., 342, 269 (2009).

    Article  CAS  Google Scholar 

  47. M. R. DashtArzhandi, A. F. Ismail, T. Matsuura, B. C. Ng and M. S. Abdullah, Chem. Eng. J., 269, 51 (2015).

    Article  Google Scholar 

  48. M. Rahbari-Sisakht, D. Rana, T. Matsuura, D. Emadzadeh, M. Padaki and A. F. Ismail, Chem. Eng. J., 246, 306 (2014).

    Article  CAS  Google Scholar 

  49. A. Hasanoğlu, J. Romero, B. Pérez and A. Plaza, Chem. Eng. J., 160, 530 (2010).

    Article  Google Scholar 

  50. A. Mansourizadeh and A. F. Ismail, Chem. Eng. J., 165, 980 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Korea CCS R&D Center (KCRC) grant funded by the Korean government (Ministry of Science, ICT & Future Planning) (No. 2014M1A8A1049314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Hoon Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.J., Binns, M., Park, S.J. et al. An experiment and model of ceramic (alumina) hollow fiber membrane contactors for chemical absorption of CO2 in aqueous monoethanolamine (MEA) solutions. Korean J. Chem. Eng. 36, 1669–1679 (2019). https://doi.org/10.1007/s11814-019-0351-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0351-6

Keywords

Navigation