Skip to main content
Log in

Asymmetrical breakup and size distribution of droplets in a branching microfluidic T-junction

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The breakup and distribution of droplets at a branching T-junction were investigated experimentally by a high-speed camera. The effects of two-phase flow rates, two-phase Reynolds number and capillary number of the dispersed phase on droplet volume distribution were studied. The results indicated that the volume distribution ratio λ decreases first and then increases with the increase of two-phase flow ratio Qd/Qc. Similarly, as the Reynolds number Rec of the continuous phase increases, the volume distribution ratio λ also decreases at first and then increases. The increase of Reynolds number Red of the dispersed phase would lead to a reduction in the volume distribution ratio λ. Moreover, the increase of the capillary number Cad of dispersed phase could result in an increase in the volume distribution ratio λ. Correlations for predicting the volume distribution ratio were proposed, and the calculated results show good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Song, J. D. Tice and R. F. Ismagilov, Angew. Chem., 115, 792 (2003).

    Article  Google Scholar 

  2. S. K. Min, B. M. Lee, H. H. Jin, S. H. Ha and H. S. Shin, Korean J. Chem. Eng., 29, 392 (2012).

    Article  CAS  Google Scholar 

  3. J. Santos, L. A. Trujillo-Cayado, N. Calero, M. C. Alfaro and J. Muñoz, J. Ind. Eng Chem., 36, 90 (2016).

    Article  CAS  Google Scholar 

  4. R. S. Boogar, R. Gheshlaghi and M. A. Mahdavi, Korean J. Chem. Eng., 30, 45 (2013).

    Article  CAS  Google Scholar 

  5. J. W. Hwang, J. H. Choi, B. Choi, G. Lee, S. W. Lee, Y. M. Koo and W. J. Chang, Korean J. Chem. Eng., 33, 57 (2016).

    Article  CAS  Google Scholar 

  6. T. Cubaud and C. M. Ho, Phys. Fluids, 16, 4575 (2004).

    Article  CAS  Google Scholar 

  7. D. R. Link, S. L. Anna, D. A. Weitz and H. A. Stone, Phys. Rev. Lett., 92, 054503 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. A. M. Leshansky and L. M. Pismen, Phys. Fluids, 21, 023303 (2009).

    Article  CAS  Google Scholar 

  9. M. Belloul, W. Engl, A. Colin, P. Panizza and A. Ajdari, Phys. Rev. Lett., 102, 194502 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. P. Parthiban and S. A. Khan, Lab Chip, 12, 582 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. B. M. Jose and T. Cubaud, Microfluid. Nanofluid., 12, 687 (2012).

    Article  CAS  Google Scholar 

  12. M. C. Jullien, M. J. Tsang Mui Ching, C. Cohen, L. Menetrier and P. Tabeling, Phys. Fluids, 21, 072001 (2009).

    Article  CAS  Google Scholar 

  13. D. A. Hoang, L. M. Portela, C. R. Kleijn, M. T. Kreutzer and V. van Steijn, J. Fluid Mech., 717 (2013).

    Google Scholar 

  14. B. Chen, G. Li, W. Wang and P. Wang, Appl. Therm. Eng., 88, 94 (2015).

    Article  Google Scholar 

  15. Y. Yong, S. Li, C. Yang and X. Yin, Chin. J. Chem. Eng., 21, 463 (2013).

    Article  CAS  Google Scholar 

  16. A. Bedram and A. Moosavi, Eur. Phys. J. E, 34, 78 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. M. Samie, A. Salari and M. B. Shafii, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys., 87, 053003 (2013).

    Article  CAS  Google Scholar 

  18. T. Fu, Y. Ma and H. Z. Li, AIChE J., 60, 1920 (2014).

    Article  CAS  Google Scholar 

  19. X. Wang, C. Zhu, T. Fu and Y. Ma, Chem. Eng. Sci., 111, 244 (2014).

    Article  CAS  Google Scholar 

  20. X. Wang, C. Zhu, T. Fu and Y. Ma, AIChE J., 61, 1081 (2015).

    Article  CAS  Google Scholar 

  21. T. Moritani, M. Yamada and M. Seki, Microfluid. Nanofluid., 11, 601 (2011).

    Article  Google Scholar 

  22. J. Chen, S. Wang and S. Cheng, Chem. Eng. Sci., 84, 706 (2012).

    Article  CAS  Google Scholar 

  23. Y. Liu, W. Sun and S. Wang, Chem. Eng. Sci., 158, 267 (2017).

    Article  CAS  Google Scholar 

  24. J. Kim, J. Won and S. Song, Biomicrofluidics, 8, 054105 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S. Lignel, A. V. Salsac, A. Drelich, E. Leclerc and I. Pezron, Colloids Surf. A, 531, 164 (2017).

    Article  CAS  Google Scholar 

  26. W. Du, T. Fu, C. Zhu, Y. Ma and H. Z. Li, AIChE J., 62, 325 (2016).

    Article  CAS  Google Scholar 

  27. T. Fu, Y. Ma, D. Funfschilling and H. Z. Li, Chem. Eng. Sci., 66, 4184 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taotao Fu or Youguang Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, P., Fu, T., Zhu, C. et al. Asymmetrical breakup and size distribution of droplets in a branching microfluidic T-junction. Korean J. Chem. Eng. 36, 21–29 (2019). https://doi.org/10.1007/s11814-018-0165-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0165-y

Keywords

Navigation