Skip to main content

Advertisement

Log in

Effect of CO2 addition on lignite gasification in a CFB reactor: A pilot-scale study

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The addition of carbon dioxide to the gasification media during lignite gasification is introduced. The paper presents thermodynamic grounds of CO2 enhanced gasification using a simplified equilibrium model. Experimental tests conducted using a pilot-scale circulating fluidized bed gasifier are discussed. Detailed analysis of the CO2/C ratio on process conditions, namely on the process gas composition, lower heating value and H2/CO ratio, is provided. Process gas composition implies that the gas is suitable for heat and power generation. Alternatively, CO2 enhanced gasification could be considered as a carbon capture and utilization technology when external, renewable heat supply to the process is used. The results thus obtained are the initial step toward development of the CO2 enhanced gasification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Minchener, Fuel, 84, 17 (2005).

    Article  Google Scholar 

  2. L. D. Smoot and P. J. Smith, Coal Combustion and Gasification, Springer US, Boston, MA (1985).

    Book  Google Scholar 

  3. C. Higman, State of the gasification industry-the updated worldwide gasification database, in: Colorado Springs (2013).

    Google Scholar 

  4. The Gasification and Syngas Technologies Council, http://www. gasification-syngas. org.

  5. B. Prabowo, H. Susanto, K. Umeki, M. Yan and K. Yoshikawa, Front. Energy, 9, 3 (2015).

    Article  Google Scholar 

  6. C.-C. Cormos, F. Starr, E. Tzimas and S. Peteves, Int. J. Hydrog. Energy, 33, 4 (2008).

    Article  Google Scholar 

  7. M. F. Irfan, M. R. Usman and K. Kusakabe, Energy, 36, 1 (2011).

    Article  Google Scholar 

  8. T. Chmielniak, M. Ściążko, G. Tomaszewicz and M. Tomaszewicz, J. Therm. Anal. Calorim., 117, 3 (2014).

    Article  Google Scholar 

  9. T. Renganathan, M. V. Yadav, S. Pushpavanam, R. K. Voolapalli and Y. S. Cho, Chem. Eng. Sci., 83 (2012).

    Google Scholar 

  10. S. Yoshida, J. Matsunami, Y. Hosokawa, O. Yokota, Y. Tamaura and M. Kitamura, Energy Fuels, 13, 5 (1999).

    Article  Google Scholar 

  11. T. Chmielniak, A. Sobolewski and G. Tomaszewicz, Przem. Chem., 94, 442 (2015).

    CAS  Google Scholar 

  12. J. W. Kook, I. S. Gwak, Y. R. Gwak, M. W. Seo and S. H. Lee, Korean J. Chem. Eng., (2017).

    Google Scholar 

  13. I. I. Ahmed and A. K. Gupta, Appl. Energy, 88, 5 (2011).

    Google Scholar 

  14. J.-H. Kim, G.-M. Kim, K. Y. Lisandy and C.-H. Jeon, Korean J. Chem. Eng., (2017).

    Google Scholar 

  15. M. Marcourt, V. Paquay, A. Piel and J.-P. Pirard, Fuel, 62, 7 (1983).

    Article  Google Scholar 

  16. G. R. Kale, Dry autothermal reforming of fuels, CSIR-National Chemical Laboratory (2014).

    Google Scholar 

  17. D. P. C. Fung and S. D. Kim, Korean J. Chem. Eng., 7, 2 (1990).

    Article  Google Scholar 

  18. F. Benedikt, J. Fuchs, J. C. Schmid, S. Müller and H. Hofbauer, Korean J. Chem. Eng., 34, 9 (2017).

    Article  Google Scholar 

  19. S. Sawettaporn, K. Bunyakiat and B. Kitiyanan, Korean J. Chem. Eng., 26, 4 (2009).

    Article  Google Scholar 

  20. M. Puig-Arnavat, J. C. Bruno and A. Coronas, Renew. Sustain. Energy Rev., 14, 9 (2010).

    Article  Google Scholar 

  21. J. Xu and G. F. Froment, AIChE J., 35, 1 (1989).

    Article  Google Scholar 

  22. K. Hou and R. Hughes, Chem. Eng. J., 82, 1 (2001).

    Article  Google Scholar 

  23. Z. A. Zainal, R. Ali, C. H. Lean and K. N. Seetharamu, Energy Convers. Manag., 42, 12 (2001).

    Article  Google Scholar 

  24. S. Jarungthammachote and A. Dutta, Energy, 32, 9 (2007).

    Article  Google Scholar 

  25. L. Chen, S. Z. Yong and A. F. Ghoniem, Prog. Energy Combust. Sci., 38, 2 (2012).

    CAS  Google Scholar 

  26. J. Guo, H. Lou, H. Zhao, D. Chai and X. Zheng, Appl. Catal. Gen., 273, 1 (2004).

    Article  Google Scholar 

  27. M. Mentser and S. Ergun, Carbon dioxide-carbon reaction by oxygen exchange, Bureau of Mines, Pittsburgh, PA (USA). Energy Research Center (1973).

    Google Scholar 

  28. S. Kajitani, S. Hara and H. Matsuda, Fuel, 81, 5 (2002).

    Article  Google Scholar 

  29. G. A. Karim, J. KONES Powertrain Transp., 14, 4 (2007).

    Google Scholar 

  30. S. Szwaja, J. KONES, 16 (2009).

    Google Scholar 

  31. S. Akansu, Int. J. Hydrog. Energy, 29, 14 (2004).

    Article  Google Scholar 

  32. J. A. Kent, Handbook of Industrial Chemistry and Biotechnology, Springer Science & Business Media (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Stec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stec, M., Czaplicki, A., Tomaszewicz, G. et al. Effect of CO2 addition on lignite gasification in a CFB reactor: A pilot-scale study. Korean J. Chem. Eng. 35, 129–136 (2018). https://doi.org/10.1007/s11814-017-0275-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0275-y

Keywords

Navigation