Skip to main content
Log in

Synthesis of Ni promoted molybdenum dioxide nanoparticles using solvothermal cracking process for catalytic partial oxidation of n-dodecane

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Ni promoted MoO2 nanoparticles were synthesized by combining spray pyrolysis and solvothermal cracking process. First, polycrystalline MoO3 microparticles were prepared by spray pyrolysis at 600 °C. Then nano-sized Ni-MoO2 particles were formed by solvothermal cracking process after adding Ni precursor, which disassembled polycrystalline MoO3 microparticles into crystalline grains by thermal expansion and shattered them into Ni-MoO2 nanoparticles by the subsequent solvothermal polyol reduction process. TPR profiles of Ni-MoO2 nanoparticles presented the decrease of reducibility of MoO2 with addition of Ni promoter. Catalytic partial oxidation of n-dodecane was conducted at various temperatures from 450 °C to 850 °C using Ni-MoO2 nanoparticles and pure MoO2 nanoparticles. H2 yield of all the Ni-MoO2 nanoparticles was higher than that of pure MoO2 nanoparticles at 850 °C. Specially, 7 and 10 mol% Ni-MoO2 nanoparticles showed desirable catalytic performance of ca. 60% of H2 yield. This is mainly attributed to the existence of polymolybdate with addition of Ni and Ni2+ species partly located in the polymolybdate layer without formation of bulk Ni phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Marin-Flores, T. Turba, C. Ellefson, K. Wang, J. Breit, J. Ahn, M.G. Norton and S. Ha, Appl. Catal. B: Environ., 98(3), 186 (2010).

    Article  CAS  Google Scholar 

  2. A. Katrib, P. Leflaive, L. Hilaire and G. Maire, Catal. Lett., 38(1), 95 (1996).

    Article  CAS  Google Scholar 

  3. O.G.M. Flores and S. Ha, Appl. Catal. A: Gen., 352(1), 124 (2009).

    Article  Google Scholar 

  4. B. W. Kwon, C. Ellefson, J. Breit, J. Kim, M. G. Norton and S. Ha, J. Power Sources, 243, 203 (2013).

    Article  CAS  Google Scholar 

  5. B. W. Kwon, S. Hu, O. Marin-Flores, M. G. Norton, J. Kim, L. Scudiero, J. Breit and S. Ha, Energy Technol., 2(5), 425 (2014).

    Article  CAS  Google Scholar 

  6. Y. Shi, B. Guo, S.A. Corr, Q. Shi, Y. Hu, K. R. Heier, L. Chen, R. Seshadri and G. D. Stucky, Nano Lett., 9(12), 4215 (2009).

    Article  CAS  Google Scholar 

  7. P. Han, W. Ma, S. Pang, Q. Kong, J. Yao, C. Bi and G. Cui, J. Materials Chem. A, 1(19), 5949 (2013).

    Article  CAS  Google Scholar 

  8. M. Matsumura and C. Hirai, J. Chem. Eng. Japan, 31(5), 734 (1998).

    Article  CAS  Google Scholar 

  9. C. A. Ellefson, O. Marin-Flores, S. Ha and M. G. Norton, J. Mater. Sci., 47(5), 2057 (2012).

    Article  CAS  Google Scholar 

  10. A. F. Cotton, G. Wilkinson, M. Bochmann and C.A. Murillo, Advanced inorganic chemistry, Wiley (1999).

    Google Scholar 

  11. P.A. Spevack and N.S. McIntyre, J. Phys. Chem., 97(42), 11020 (1993).

    Article  CAS  Google Scholar 

  12. J. Zhou, N. Xu, S. Deng, J. Chen, J. She and Z. Wang, Adv. Mater, 15(21), 1835 (2003).

    Article  CAS  Google Scholar 

  13. Y. Liang, Z. Yi, S. Yang, L. Zhou, J. Sun and Y. Zhou, Solid State Ionics, 177(5), 501 (2006).

    Article  CAS  Google Scholar 

  14. X. Chen, Z. Zhang, X. Li, C. Shi and X. Li, Chem. Phys. Lett., 418(1), 105 (2006).

    Article  CAS  Google Scholar 

  15. H. Choi, J. H. Heo, S. Ha, B.W. Kwon, S. P. Yoon, J. Han, W. Kim, S. H. Im and J. Kim, Chem. Eng. J., 310, 179 (2017).

    Article  CAS  Google Scholar 

  16. H. Lee, G. S. Shin and Y. Kim, Korean J. Chem. Eng., 32(7), 1267 (2015).

    Article  CAS  Google Scholar 

  17. H. Choi, D. Kim, S.P. Yoon, J. Han, S. Ha and J. Kim, J. Anal. Appl. Pyrol., 112, 276 (2015).

    Article  CAS  Google Scholar 

  18. M. Liu, L. Kong, C. Lu, X. Ma, X. Li, Y. Luo and L. Kang, J. Materials Chem. A, 1(4), 1380 (2013).

    Article  CAS  Google Scholar 

  19. L. Xu and X. Li, J. Cryst. Growth, 312(6), 851 (2010).

    Article  CAS  Google Scholar 

  20. Q. He, O. Marin-Flores, S. Hu, L. Scudiero, S. Ha and M. G. Norton, J. Nanoparticle Res., 16(5), 2385 (2014).

    Article  Google Scholar 

  21. L. Qu, W. Zhang, P. J. Kooyman and R. Prins, J. Catal., 215(1), 7 (2003).

    Article  CAS  Google Scholar 

  22. P. Arnoldy, J. De Jonge and J.A. Moulijn, J. Phys. Chem., 89(21), 4517 (1985).

    Article  CAS  Google Scholar 

  23. J. Chen, W. Li and R. Shen, Korean J. Chem. Eng., 33(2), 500 (2016).

    Article  Google Scholar 

  24. O. Marin-Flores, T. Turba, J. Breit, M.G. Norton and S. Ha, Appl. Catal. A: Gen., 381(1), 18 (2010).

    Article  CAS  Google Scholar 

  25. Q. He, O. Marin-Flores, S. Hu, L. Scudiero, S. Ha and M. G. Norton, Scr. Mater., 100, 55 (2015).

    Article  CAS  Google Scholar 

  26. P. Dufresne, E. Payen, J. Grimblot and J. P. Bonnelle, J. Phys. Chem., 85(16), 2344 (1981).

    Article  CAS  Google Scholar 

  27. E. Matsubara and K. Shinoda, Japanese J. Appl. Phys., 38(S1), 576 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kye Sang Yoo or Jinsoo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Im, K., Choi, H., Yoo, K.S. et al. Synthesis of Ni promoted molybdenum dioxide nanoparticles using solvothermal cracking process for catalytic partial oxidation of n-dodecane. Korean J. Chem. Eng. 35, 283–288 (2018). https://doi.org/10.1007/s11814-017-0262-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0262-3

Keywords

Navigation