Skip to main content
Log in

Modeling and simulation of drying characteristics on flexible filamentous particles in rotary dryers

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Experiments were conducted to demonstrate the effects of the drum wall temperature on the heat and mass transfer in rotary dryers. The drying characteristics of flexible filamentous particles in rotary dryers were further explored. In addition, the inlet and outlet temperatures and moisture contents of granular particles were measured. As a result, the good agreement between the simulations and experiments verified the rationale and feasibility of the numerical method. Therefore, the approach was adopted to evaluate the temperature and moisture content of wet granular particles in a rotary dryer in different conditions, for instance, drum wall temperature and rotational speed. The results revealed that the higher drum wall temperature led to hotter particles with lower outlet moisture content. Conversely, the higher rotational speed resulted in cooler particles with higher outlet moisture content due to the decrease of residence time in the rotary dryer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Herrmann, Physics World, 10, 31 (1997).

    Article  Google Scholar 

  2. J. Bridgewater, Chem. Eng. Sci., 50, 4081 (1995).

    Article  Google Scholar 

  3. Z. G. Huang and Z. H. Mao, Food Sci., 24, 185 (2003).

    Google Scholar 

  4. K. Di and J. Li, Cereal & Feed Industry, 12, 16 (2011).

    Google Scholar 

  5. C. W. Cao and W. X. Zhu, Computer simulation of agricultural drying process, China Agriculture Press, Beijing, 74 (2000).

    Google Scholar 

  6. J. Wang, S. J. Li and Y. C. Yang, Packaging and Food Machinery, 29, 44 (2011).

    Google Scholar 

  7. F.Y. Wang, I.T. Cameron, J.D. Litster and P. L. Douglas, Drying Technol., 11, 1641 (1993).

    Article  CAS  Google Scholar 

  8. F.Y. Wang, I.T. Cameron, J.D. Litster and P. L. Douglas, Drying Technol., 13, 737 (1995).

    Article  CAS  Google Scholar 

  9. F.Y. Wang, I.T. Cameron, J.D. Litster and V. Rudolph, Drying Technol., 13, 1261 (1995).

    Article  CAS  Google Scholar 

  10. Y. Kaneko, T. Shiojima and M. Horio, Chem. Eng. Sci., 54, 5809 (1999).

    Article  CAS  Google Scholar 

  11. J. Li, D. J. Mason and A. S. Mujumdar, Drying Technol., 21, 1839 (2003).

    Article  CAS  Google Scholar 

  12. J. Li and D. J. Mason, Powder Technol., 3, 273 (2000).

    Article  Google Scholar 

  13. K. S. Hatzilyberis, G. P. Androutsophoulos and C. E. Salmas, Drying Technol., 18, 2009 (2000).

    Article  CAS  Google Scholar 

  14. M. Renaud, J. Thibault and P. I. Alvarez, Drying Technol., 19, 2131 (2000).

    Article  Google Scholar 

  15. W. L. Vargas and J. J. McCarthy, AIChE J., 47, 1052 (2001).

    Article  CAS  Google Scholar 

  16. L. P. Zhu, Z.L. Yuan and Y.M. Yan, CIESC J., 63, 2051 (2012).

    CAS  Google Scholar 

  17. L. P. Zhu, Z.L. Yuan and Y.M. Yan, CIESC J., 64, 2736 (2013).

    CAS  Google Scholar 

  18. H. L. Zhang, S.R. Yang and Z.M. Xu, J. Eng. Thermophysics, 26, 277 (2005).

    CAS  Google Scholar 

  19. C. H. Gu, X. Zhang and B. Li, Powder Technol., 267, 234 (2014).

    Article  CAS  Google Scholar 

  20. F. Geng and Z. L. Yuan, Powder Technol., 193, 50 (2009).

    Article  CAS  Google Scholar 

  21. J.G. Tong, Engineering Thermodynamics, Higher Education Press, Beijing, 58 (2007).

    Google Scholar 

  22. Z.G. Huang, H. Zhu and D. Li, Computer Simulation, 23, 330 (2006).

    Google Scholar 

  23. W. H. Zi, B. H. He and J. Liu, Journal of Kunming University of Science and Technology, 37, 85 (2012).

    CAS  Google Scholar 

  24. Z.G. Huang, D. Li and H. Zhu, Machinery Design & Manufacture, 1, 33 (2005).

    Google Scholar 

  25. H. Zarea Hosseinabadi, M. Layeghi and D. Berthold, Drying Technol., 32, 55 (2014).

    Article  Google Scholar 

  26. R.M. Santos and J.W.P. Llanos, Drying Technol., 33, 37 (2015).

    Article  CAS  Google Scholar 

  27. S. J. Friedman and W.R. Marshall, Chem. Eng. Process., 45, 482 (1949).

    CAS  Google Scholar 

  28. H. Abbasfard, S. Ghader and H. H. Rafsanjani, Drying Technol., 31, 1297 (2013).

    Article  CAS  Google Scholar 

  29. H. Abbasfard, H. H. Rafsanjani and S. Ghader, Powder Technol., 239, 499 (2013).

    Article  CAS  Google Scholar 

  30. GB/T21305-2007, Cereals and cereal products—Determination of moisture content—Routine reference method, Standards Press of China, Beijing (2007).

  31. M. Eslamian, M. Ahmed and N. Ashgriz, Nanotechnology, 17, 1674 (2006).

    Article  CAS  Google Scholar 

  32. M. Eslamian, M. Ahmed and N. Ashgriz, Drying Technol., 27, 3 (2009).

    Article  CAS  Google Scholar 

  33. M. Eslamian, M. Ahmed and A. H. H. Ali, Drying Technol., 29, 1025 (2011).

    Article  CAS  Google Scholar 

  34. G. M. Jin, Drying Equipment, Shanghai Science and Technology, Shanghai (2002).

    Google Scholar 

  35. K.Z. Ding, G.D. Deng and R. He. Acta Tabacaria Sinica, 3, 33 (2010).

    Google Scholar 

  36. C.W. Qiu, Technology and Enterprise, 8, 327 (2012).

    Google Scholar 

  37. J.F. Zhao, B. Li and W. K. Zhu. Manufacturing Technol., 6, 12 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhulin Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, C., Zhang, C., Zhang, X. et al. Modeling and simulation of drying characteristics on flexible filamentous particles in rotary dryers. Korean J. Chem. Eng. 34, 20–28 (2017). https://doi.org/10.1007/s11814-016-0224-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0224-1

Keywords

Navigation