Skip to main content

Advertisement

Log in

CO2 capture using aqueous solutions of K2CO3+2-methylpiperazine and monoethanolamine: Specific heat capacity and heat of absorption

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The specific heat capacity, heat of CCO2 absorption, and CCO2 absorption capacity of aqueous solutions of potassium carbonate (K2CO3)+2-methylpiperazine (2-MPZ) and monoethanolamine (MEA) were measured over various temperatures. An aqueous solution of K2CO3+2-MPZ is a promising absorbent for CCO2 capture because it has high CCO2 absorption capacity with improved absorption rate and degradation stability. Aqueous solution of MEA was used as a reference absorbent for comprison of the thermodynamic characteristics. Specific heat capacity was measured using a differential scanning calorimeter (DSC), and heat of CCO2 absorption and CCO2 absorption capacity were measured using a differential reaction calorimeter (DRC). The CCO2-loaded solutions had lower specific heat capacities than those of fresh solutions. Aqueous solutions of K2CO3+2-MPZ had lower specific heat capacity than those of MEA over the temperature ranges of 303-353 K. Under the typical operating conditions for the process (CCO2 loading=0.23mol-CCO2·mol−1-solute in fresh solution, T=313 K), the heat of absorption (−ΔHabs) of aqueous solutions of K2CO3+2-MPZ and MEA were approximately 49 and 75 kJ·mol-CO2, respectively. The thermodynamic data from this study can be used to design a process for CCO2 capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Barzagli, F. Mani and M. Peruzzini, Energy Environ. Sci., 3, 772 (2010).

    Article  CAS  Google Scholar 

  2. M. Ahmadi, V. G. Gomes and K. Ngian, Sep. Purif. Technol., 63, 107 (2008).

    Article  CAS  Google Scholar 

  3. J. Oexmann, A. Kather, S. Linnenberg and U. Liebenthal, Greenhouse Gas Sci. Technol., 2, 80 (2012).

    Article  CAS  Google Scholar 

  4. M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw and H. Yeung, Chem. Eng. Res. Des., 89, 1609 (2011).

    Article  CAS  Google Scholar 

  5. T. Yokoyama, Sep. Purif. Technol., 94, 97 (2012).

    Article  CAS  Google Scholar 

  6. J. Oexmann and A. Kather, Int. J. Greenhouse Gas Control., 4, 36 (2010).

    Article  CAS  Google Scholar 

  7. R. H. Weiland, J. C. Dingman and D. B. Cronin, J. Chem. Eng. Data, 42, 1004 (1997).

    Article  CAS  Google Scholar 

  8. L.-F. Chiu, H.-F. Liu and M.-H. Li, J. Chem. Eng. Data, 44, 631 (1999).

    Article  CAS  Google Scholar 

  9. L.-F. Chiu and M.-H. Li, J. Chem. Eng. Data, 44, 1396 (1999).

    Article  CAS  Google Scholar 

  10. Y.-J. Chen and M.-H. Li, J. Chem. Eng. Data, 46, 102 (2001).

    Article  CAS  Google Scholar 

  11. Y.-J. Chen, T.-W. Shih and M.-H. Li, J. Chem. Eng. Data, 46, 51 (2001).

    Article  CAS  Google Scholar 

  12. F. Harris, K. D. Kurnia, M. I. A. Mutalib and T. Murugesan, J. Chem. Eng. Data, 55, 547 (2010).

    Article  CAS  Google Scholar 

  13. H.-J. Song, M.-G. Lee, H. Kim, A. Gaur and J.-W. Park, J. Chem. Eng. Data, 56, 1371 (2011).

    Article  CAS  Google Scholar 

  14. I. Kim and H. F. Svendsen, Ind. Eng. Chem. Res., 46, 5803 (2007).

    Article  CAS  Google Scholar 

  15. N. McCann, M. Maeder and M. Attalla, Ind. Eng. Chem. Res., 47, 2002 (2008).

    Article  CAS  Google Scholar 

  16. F. Qin, S. Wang, I. Kim, H. F. Svendsen and C. Chen, Int. J. Greenhouse Gas Control., 5, 405 (2011).

    Article  CAS  Google Scholar 

  17. H. Arcis, K. Ballerat-Busserolles, L. Rodier and J.-Y. Coxam, J. Chem. Eng. Data, 56, 3351 (2011).

    Article  CAS  Google Scholar 

  18. T. Filburn, J. J. Helble and R. A. Weiss, Ind. Eng. Chem. Res., 44, 1542 (2005).

    Article  CAS  Google Scholar 

  19. I. Kim, K. A. Hoff, E. T. Hessen, T. Haug-Warberg and H. F. Svendsen, Chem. Eng. Sci., 64, 2027 (2009).

    Article  CAS  Google Scholar 

  20. H. Arcis, L. Rodier and J.-Y. Coxam, J. Chem. Thermodyn., 39, 878 (2007).

    Article  CAS  Google Scholar 

  21. H. Arcis, K. Ballerat-Busserolles, L. Rodier and J.-Y. Coxam, J. Chem. Eng. Data, 57, 840 (2012).

    Article  CAS  Google Scholar 

  22. H. Arcis, L. Rodier, K. Ballerat-Busserolles and J.-Y. Coxam, J. Chem. Thermodyn., 41, 783 (2009).

    Article  CAS  Google Scholar 

  23. I. Kim and H. F. Svendsen, Int. J. Greenhouse Gas Control., 5, 390 (2011).

    Article  CAS  Google Scholar 

  24. X. Chen and G. T. Rochelle, Chem. Eng. Res. Des., 87, 1693 (2011).

    Article  Google Scholar 

  25. S. S. Laddha and P. V. Danckwerts, Chem. Eng. Sci., 37, 665 (1982).

    Article  CAS  Google Scholar 

  26. R. Ramazani, S. Mazinani, A. Hafizi, A. Jahanmiri, S. Van der Bruggen and S. Darvishmanesh, Sep. Sci. Technol., 51, 327 (2016).

    Article  CAS  Google Scholar 

  27. J. T. Cullinane and G. T. Rochelle, Chem. Eng. Sci., 59, 3619 (2004).

    Article  CAS  Google Scholar 

  28. J. T. Cullinane, Ph. D. Dissertation, University of Texas (2005).

    Google Scholar 

  29. J. T. Cullinane and G. T. Rochelle, Fluid Phase Equilib, 227, 197 (2005).

    Article  CAS  Google Scholar 

  30. A. L. Kohl and R. B. Nielsen, Gas Purification; 5th Ed., Gulf Publishing Company, Huston (1997).

    Google Scholar 

  31. X. Chen and G. T. Rochelle, Ing. Eng. Chem. Res., 52, 4229 (2013).

    Article  CAS  Google Scholar 

  32. G. Astarita, D. W. Savage and J. M. Longo, Chem. Eng. Sci., 36, 581 (1981).

    Article  CAS  Google Scholar 

  33. Y. E. Kim, J. H. Choi, S. C. Nam and Y. I. Yoon, J. Ind. Eng. Chem., 18, 105 (2012).

    Article  CAS  Google Scholar 

  34. Y. E. Kim, S. H. Yun, J. H. Choi, S. C. Nam, S. Y. Park, S. K. Jeong and Y. I. Yoon, Energy Fuels, 29, 2582 (2015).

    Article  CAS  Google Scholar 

  35. M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw and H. Yeung, Chem. Eng. Res. Des., 89, 1609 (2011).

    Article  CAS  Google Scholar 

  36. Y. E. Kim, J. A. Lim, S. K. Jeong, Y. I. Yoon, S. T. Bae and S. C. Nam, Bull. Korean Chem. Soc., 34, 783 (2013).

    Article  CAS  Google Scholar 

  37. J.-A. Lim, D. H. Kim, Y. Yoon, S. K. Jeong, K. T. Park and S. C. Nam, Energy Fules, 26, 3910 (2012).

    Article  CAS  Google Scholar 

  38. A. B. Rao and E. S. Rubin, Environ. Sci. Technol., 36, 4467 (2002).

    Article  CAS  Google Scholar 

  39. R. Sakawattanapong, A. Aroonwilas and A. Veawab, Ind. Eng. Chem. Res., 44, 4465 (2005).

    Article  Google Scholar 

  40. R. Idem, M. Wilson, P. Tontiwachwuthikul, A. Chakma, A. Veawab, A. Aroonwilas and D. Gelowitz, Ind. Eng. Chem. Res., 45, 2414 (2006).

    Article  CAS  Google Scholar 

  41. H. Svensson, C. Hultenberg, H. T. Karlsson, Int. J. Greenhouse Gas Control., 17, 89 (2013).

    Article  CAS  Google Scholar 

  42. G. F. Versteeg and W. P. M. van Swaaij, Chem. Eng. Sci., 43, 573 (1988).

    Article  CAS  Google Scholar 

  43. R. J. Littel, G. F. Versteeg and W. P. M. van Swaaij, Chem. Eng. Sci., 47, 2027 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeo Il Yoon.

Additional information

This article is dedicated to Prof. Sung Hyun Kim on the occasion of his retirement from Korea University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.E., Choi, J.H., Yun, S.H. et al. CO2 capture using aqueous solutions of K2CO3+2-methylpiperazine and monoethanolamine: Specific heat capacity and heat of absorption. Korean J. Chem. Eng. 33, 3465–3472 (2016). https://doi.org/10.1007/s11814-016-0186-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0186-3

Keywords

Navigation