Skip to main content
Log in

Modeling of gas permeation through mixed matrix membranes using a comprehensive computational method

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Three different morphologies can occur at the interface of inorganic and polymeric phases in mixed matrix membranes (MMMs). These morphologies are characterized by their different parameters such as partial pore blockage factor (α), polymer chain rigidification factor (β), and thickness of rigidified layer or void region. In this study, the morphology of three MMMs has been evaluated using a comprehensive computational method. The average absolute relative error (%AARE) is used as a criterion for optimizing three various MMM morphological parameters. According to the obtained optimum parameters, it was confirmed that two MMMs of C60/Matrimid and PVAc-Zeolite 4A have pore blockage and polymer chain rigidified defects. The results show that the morphology of ZIF-8/6FDA-DAM can be considered as an ideal morphology. After obtaining the morphological parameters, the permeability of the studied MMMs was predicted based on the modified Maxwell model and good agreement was observed between the calculated value and the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Baker, Membrane Technology and Applications, 2nd Ed., 1, Wiley (2004).

    Book  Google Scholar 

  2. H. Lin and B. D. Freeman, J. Mol. Struct., 739, 57 (2005).

    Article  CAS  Google Scholar 

  3. E. McLeary, J. Jansen and F. Kapteijn, Micropor. Mesopor. Mater., 90, 198 (2006).

    Article  CAS  Google Scholar 

  4. P. Pandey and R. Chauhan, Prog. Polym. Sci., 26, 853 (2001).

    Article  CAS  Google Scholar 

  5. T.-S. Chung, L. Y. Jiang, Y. Li and S. Kulprathipanja, Prog. Polym. Sci., 32, 483 (2007).

    Article  CAS  Google Scholar 

  6. Y. Li, W. B. Krantz and T. S. Chung, AIChE J., 53, 2470 (2007).

    Article  CAS  Google Scholar 

  7. R. Mahajan and W. J. Koros, Polym. Eng. Sci., 42, 1420 (2002).

    Article  CAS  Google Scholar 

  8. R. Mahajan, W. J. Koros and M. Thundyil, Membr. Technol., 1999, 6 (1999).

    Google Scholar 

  9. D. Q. Vu, W. J. Koros and S. J. Miller, J. Membr. Sci., 211, 335 (2003).

    Article  CAS  Google Scholar 

  10. M. A. Semsarzadeh, B. Ghalei, M. Fardi, M. Esmaeeli and E. Vakili, Korean J. Chem. Eng., 31, 841 (2014).

    Article  CAS  Google Scholar 

  11. M. Arjmandi, M. Pakizeh and O. Pirouzram, Korean J. Chem. Eng., 32, 1178 (2015).

    Article  CAS  Google Scholar 

  12. R. Bouma, A. Checchetti, G. Chidichimo and E. Drioli, J. Membr. Sci., 128, 141 (1997).

    Article  CAS  Google Scholar 

  13. R. Pal, J. Colloid Interface Sci., 317, 191 (2008).

    Article  CAS  Google Scholar 

  14. T. T. Moore, R. Mahajan, D. Q. Vu and W. J. Koros, AIChE J., 50, 311 (2004).

    Article  CAS  Google Scholar 

  15. J. C. Maxwell, Clarendon press, Oxford (1881).

  16. E. E. Gonzo, M. L. Parentis and J. C. Gottifredi, J. Membr. Sci., 277, 46 (2006).

    Article  CAS  Google Scholar 

  17. G. Banhegyi, Colloid. Polym. Sci., 264, 1030 (1986).

    Article  CAS  Google Scholar 

  18. T. Lewis and L. Nielsen, J. Appl. Polym. Sci., 14, 1449 (1970).

    Article  CAS  Google Scholar 

  19. L. E. Nielsen, J. Appl. Polym. Sci., 17, 3819 (1973).

    Article  Google Scholar 

  20. M. Aroon, A. Ismail, T. Matsuura and M. Montazer-Rahmati, Sep. Purif. Technol., 75, 229 (2010).

    Article  CAS  Google Scholar 

  21. H. Vinh-Thang and S. Kaliaguine, J. Membr. Sci., 452, 271 (2014).

    Article  CAS  Google Scholar 

  22. H. Vinh-Thang and S. Kaliaguine, Chem. Rev., 113, 4980 (2013).

    Article  CAS  Google Scholar 

  23. S. A. Hashemifard, A. F. Ismail and T. Matsuura, J. Membr. Sci., 347, 53 (2010).

    Article  CAS  Google Scholar 

  24. K. M. Gheimasi, T. Mohammadi and O. Bakhtiari, J. Membr. Sci., 427, 399 (2013).

    Article  Google Scholar 

  25. J. A. Sheffel and M. Tsapatsis, J. Membr. Sci., 295, 50 (2007).

    Article  CAS  Google Scholar 

  26. J. A. Sheffel and M. Tsapatsis, J. Membr. Sci., 326, 595 (2009).

    Article  CAS  Google Scholar 

  27. T. Singh, D.-Y. Kang and S. Nair, J. Membr. Sci., 448, 160 (2013).

    Article  CAS  Google Scholar 

  28. A.-C. Yang, C.-H. Liu and D.-Y Kang, J. Membr. Sci., 495, 269 (2015).

    Article  CAS  Google Scholar 

  29. T.-S. Chung, S. S. Chan, R. Wang, Z. Lu and C. He, J. Membr. Sci., 211, 91 (2003).

    Article  CAS  Google Scholar 

  30. C. Zhang, Y. Dai, J. R. Johnson, O. Karvan and W. J. Koros, J. Membr. Sci., 389, 34 (2012).

    Article  CAS  Google Scholar 

  31. R. Mahajan and W. J. Koros, Ind. Eng. Chem. Res., 39, 2692 (2000).

    Article  CAS  Google Scholar 

  32. S. Varanasi, O. Guskova, A. John and J.-U. Sommer, J. Chem. Phys., 142, 224308 (2015).

    Article  CAS  Google Scholar 

  33. R. T. Adams, J. S. Lee, T.-H. Bae, J. K. Ward, J. Johnson, C. W. Jones, S. Nair and W. J. Koros, J. Membr. Sci., 367, 197 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Pakizeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakizeh, M., Ofoghi, S. & Shooshtari, S.H.R. Modeling of gas permeation through mixed matrix membranes using a comprehensive computational method. Korean J. Chem. Eng. 33, 3194–3202 (2016). https://doi.org/10.1007/s11814-016-0166-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0166-7

Keywords

Navigation