Skip to main content
Log in

Conversion of methanol into light olefins over ZSM-11 catalyst in a circulating fluidized-bed unit

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Methanol conversion and the reaction pathway were investigated in a pilot-scale circulating fluidized-bed (CFB) unit over hierarchical ZSM-11 catalyst. Experimental results indicated that ZSM-11 catalyst was highly resistant to external coke due to the formation of mesopores. Elevated temperatures favored the production of propylene and butylene and decreased the yield of ethylene. Additionally, no direct relations were shown between the formation of ethylene and other products under different pressures, suggesting that ethylene was a primary product produced at the initial of the reaction. Methylation-cracking and oligomerization were verified as the main reaction pathway for the formation of C +3 alkenes., Methylation and oligomerization of olefins were dominated under high methanol partial pressure and consequently responsible for the production of higher olefins, while the b-scission of C =7 for propene and butylene, and C =8 for butylene were enhanced at low methanol partial pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. D. Chang and A. J. Silvestri, J. Catal., 47, 249 (1977).

    Article  CAS  Google Scholar 

  2. F. J. Keil, Micropor. Mesopor. Mater., 29, 49 (1999).

    Article  CAS  Google Scholar 

  3. B. P. C. Hereijgers, F. Bleken, M. H. Nilsen, S. Svelle, K. P. Lillerud, M. Bjørgen, B. M. Weckhuysen and U. Olsbye, J. Catal., 264, 77 (2009).

    Article  CAS  Google Scholar 

  4. H. A. Zaidi, and K. K. Pant, Korean J. Chem. Eng., 27, 1404 (2010).

    Article  CAS  Google Scholar 

  5. H. G. Kim, K. Y. Lee, H. G. Jang, Y. S. Song and G. Seo, Korean J. Chem. Eng., 27, 1773 (2010).

    Article  CAS  Google Scholar 

  6. M. StÖcker, Micropor. Mesopor. Mater., 29, 3 (1999).

    Article  Google Scholar 

  7. W. Song, D. M. Marcus, H. Fu, J. O. Ehresmann and J. F. Haw, J. Am. Chem. Soc., 124, 3844 (2002).

    Article  CAS  Google Scholar 

  8. D. M. Marcus, K. A. McLachlan, M. A. Wildman, J. O. Ehresmann, P. W. Kletnieks and J. F. Haw, Angew. Chem. Int. Ed., 45, 3133 (2006).

    Article  CAS  Google Scholar 

  9. D. Lesthaeghe, V. V. Speybroeck, G. B. Marin and M. Waroquier, Angew. Chem. Int. Ed., 45, 1714 (2006).

    Article  CAS  Google Scholar 

  10. S. R. Blaszkowski and R. A. van Santen, J. Am. Chem. Soc., 119, 5020 (1997).

    Article  CAS  Google Scholar 

  11. D. Lesthaeghe, V. Van Speybroeck, G. B. Marin and M. Waroquier, Ind. Eng. Chem. Res., 46, 8832 (2007).

    Article  CAS  Google Scholar 

  12. R. M. Dessau, J. Catal., 99, 111 (1986).

    Article  CAS  Google Scholar 

  13. I. M. Dahl and S. Kolboe, Catal. Lett., 20, 329 (1993).

    Article  CAS  Google Scholar 

  14. W. Song, J. F. Haw, J. B. Nicholas and C. S. Heneghan, J. Am. Chem. Soc., 122, 10726 (2000).

    Article  CAS  Google Scholar 

  15. S. Ilias and A. Bhan, J. Catal., 311, 6 (2014).

    Article  CAS  Google Scholar 

  16. M. Bjørgen, S. Svelle, F. Joensen, J. Nerlov, S. Kolboe, F. Bonino, L. Palumbo, S. Bordiga and U. Olsbye, J. Catal., 249, 195 (2007).

    Article  Google Scholar 

  17. S. Ilias and A. Bhan, J. Catal., 290, 186 (2012).

    Article  CAS  Google Scholar 

  18. Q. Yu, C. Cui, Q. Zhang, J. Chen, Y. Li, J. Sun, C. Li, Q. Cui, C. Yang and H. Shan, J. Energy Chem., 22, 761 (2013).

    Article  CAS  Google Scholar 

  19. C. Li, Q. Yu and J. Chen, CN Patent, ZL 201210003750.5 (2012).

    Google Scholar 

  20. Y. Gu, N. Cui, Q. Yu, C. Li and Q. Cui, Appl. Catal. A, 429–430, 9 (2012).

    Article  Google Scholar 

  21. Q. Yu, X. Meng, J. Liu, C. Li and Q. Cui, Micropor. Mesopor. Mater., 181, 192 (2013).

    Article  CAS  Google Scholar 

  22. Q. Yu, Q. Zhang, J. Liu, C. Li and Q. Cui, CrystEngComm, 15, 7680 (2013).

    Article  CAS  Google Scholar 

  23. Q. Yu, Y. Li, X. Meng, Q. Cui and C. Li, Mater. Lett., 124, 204 (2014).

    Article  CAS  Google Scholar 

  24. Q. Yu, J. Chen, Q. Zhang, C. Li and Q. Cui, Mater. Lett., 120, 97 (2014).

    Article  CAS  Google Scholar 

  25. L. Zhang, H. Liu, X. Li, S. Xie, Y. Wang, W. Xin, S. Liu and L. Xu, Fuel Process. Technol., 91, 449 (2010).

    Article  CAS  Google Scholar 

  26. F. L. Bleken, K. Barbera, F. Bonino, U. Olsbye, K. P. Lillerud, S. Bordiga, P. Beato, T. V. W. Janssens and S. Svelle, J. Catal., 307, 62 (2013).

    Article  CAS  Google Scholar 

  27. G. T. Kokotailo, P. Chu, S. L. Lawton and W. M. Meier, Nature, 275, 119 (1978).

    Article  CAS  Google Scholar 

  28. T. V. W. Janssens, J. Catal., 264, 130 (2009).

    Article  CAS  Google Scholar 

  29. W. J. H. Dehertog and G. F. Froment, Appl. Catal., 71, 153 (1991).

    Article  CAS  Google Scholar 

  30. W. Wu, W. Guo, W. Xiao and M. Luo, Fuel Process. Technol., 108, 19 (2013).

    Article  CAS  Google Scholar 

  31. C. D. Chang, C. T. W. Chu and R. F. Socha, J. Catal., 86, 289 (1984).

    Article  CAS  Google Scholar 

  32. L. J. Van Rensburg, R. Hunter and G. J. Hutchings, Appl. Catal., 42, 29 (1988).

    Article  Google Scholar 

  33. C. D. Chang, W. H. Lang and R. L. Smith, J. Catal., 56, 169 (1979).

    Article  CAS  Google Scholar 

  34. S. Teketel, U. Olsbye, K. P. Lillerud, P. Beato and S. Svelle, Micropor. Mesopor. Mater., 136, 33 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Huang, H., Zhang, Q. et al. Conversion of methanol into light olefins over ZSM-11 catalyst in a circulating fluidized-bed unit. Korean J. Chem. Eng. 33, 831–837 (2016). https://doi.org/10.1007/s11814-015-0234-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0234-4

Keywords

Navigation