Skip to main content
Log in

Properties of LiNi0.8Co0.1Mn0.1O2 as a high energy cathode material for lithium-ion batteries

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Nickel-rich layered materials are prospective cathode materials for use in lithium-ion batteries due to their higher capacity and lower cost relative to LiCoO2. In this work, spherical Ni0.8Co0.1Mn0.1(OH)2 precursors are successfully synthesized through a co-precipitation method. The synthetic conditions of the precursors - including the pH, stirring speed, molar ratio of NH4OH to transition metals and reaction temperature - are investigated in detail, and their variations have significant effects on the morphology, microstructure and tap-density of the prepared Ni0.8Co0.1Mn0.1 (OH)2 precursors. LiNi0.8Co0.1Mn0.1O2 is then prepared from these precursors through a reaction with 5% excess LiOH· H2O at various temperatures. The crystal structure, morphology and electrochemical properties of the Ni0.8Co0.1Mn0.1 (OH)2 precursors and LiNi0.8Co0.1Mn0.1O2 were investigated. In the voltage range from 3.0 to 4.3 V, LiNi0.8Co0.1Mn0.1O2 exhibits an initial discharge capacity of 193.0mAh g-1 at a 0.1 C-rate. The cathode delivers an initial capacity of 170.4 mAh g-1 at a 1 C-rate, and it retains 90.4% of its capacity after 100 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kraytsberg and Y. Ein-Eli, Adv. Energy Mater., 2, 922 (2012).

    Article  CAS  Google Scholar 

  2. K. Zaghib, A. Mauger, H. Groult, J. Goodenough and C. Julien, Materials (Basel), 6, 1028 (2013).

    Article  CAS  Google Scholar 

  3. B. L. Ellis, K.T. Lee and L. F. Nazar, Chem. Mater., 3, 691 (2010).

    Article  Google Scholar 

  4. F. Liu, S. Song, D. Xue and H. Zhang, Nanoscale Res. Lett., 7, 149 (2012).

    Article  CAS  Google Scholar 

  5. J. B. Goodenough and Y. Kim, Chem. Mater., 22, 587 (2010).

    Article  CAS  Google Scholar 

  6. K. Mizushima, P.C. Jones, P. J. Wiseman and J.B. Goodenough, Mater. Res. Bull., 15, 783 (1980).

    Article  CAS  Google Scholar 

  7. M. S. Whittingham, Chem. Rev., 104, 4271 (2004).

    Article  CAS  Google Scholar 

  8. K. Ozawa, Solid State Ionics, 69, 212 (1994).

    Article  CAS  Google Scholar 

  9. Z. Wang, Z. Wang, H. Guo, W. Peng and X. Li, Ceram. Int., 41, 469 (2015).

    Article  CAS  Google Scholar 

  10. G. Amatucci, Solid State Ionics, 83, 167 (1996).

    Article  CAS  Google Scholar 

  11. J. M. Tarascon and M. Armand, Nature, 414, 359 (2001).

    Article  CAS  Google Scholar 

  12. C. M. Julien, A. Mauger, K. Zaghib and H. Groult, Inorganics, 2, 132 (2014).

    Article  CAS  Google Scholar 

  13. P. Kalyani and N. Kalaiselvi, Sci. Technol. Adv. Mater., 6, 689 (2005).

    Article  CAS  Google Scholar 

  14. Y.-K. Sun, Z. Chen, H.-L. Noh, D.-J. Lee, H.-G. Jung, Y. Ren, S. Wang, C. S. Yoon, S.-T. Myung and K. Amine, Nat. Mater., 11, 942 (2012).

    Article  CAS  Google Scholar 

  15. D.P. Abraham, R.D. Twesten, M. Balasubramanian, I. Petrov, J. McBreen and K. Amine, Electrochem. Commun., 4, 620 (2002).

    Article  CAS  Google Scholar 

  16. B. J. Hwang, Y.W. Tsai, D. Carlier and G. Ceder, Chem. Mater., 15, 3676 (2003).

    Article  CAS  Google Scholar 

  17. S. Zhang, C. Deng, B.L. Fu, S.Y. Yang and L. Ma, Powder Technol., 198, 373 (2010).

    Article  CAS  Google Scholar 

  18. J. J. Saavedra-Aria, N.K. Karan, D.K. Pradhan, A. Kumar, S. Nieto, R. Thomas and R. S. Katiyar, J. Power Sources, 183, 761 (2008).

    Article  Google Scholar 

  19. H. Lu, H. Zhou, A. M. Svensson, A. Fossdal, E. Shreidan, S. Lu and F. V. Bruer, Solid State Ionics, 249, 105 (2013).

    Google Scholar 

  20. G. Ting-Kuo Fey, J.-G. Chen, Z.-F. Wang, H.-Z. Yang and T. P. Kumar, Mater. Chem. Phys., 87, 246 (2004).

    Article  CAS  Google Scholar 

  21. G.T.-K. Fey, V. Subramanian and C.-Z. Lu, Solid State Ionics, 152–153, 83 (2002).

    Article  Google Scholar 

  22. G.T.K. Fey, R.F. Shiu, V. Subramanian, J.G. Chen and C.L. Chen, J. Power Sources, 103, 265 (2002).

    Article  CAS  Google Scholar 

  23. L. I. Ling-jun, L. I. Xin-hai, W. Zhi-xing, W. Ling, Z. Jun-chao and L. Jin-hui, Trans. Nonferrous Met. Soc. China., 20, 279 (2010).

    Article  Google Scholar 

  24. Y. Zhang, H. Cao, J. Zhang and B. Xia, Solid State Ionics, 177, 3303 (2006).

    Article  CAS  Google Scholar 

  25. B. Zhang, L. Li and J. Zheng, J. Alloys Compd., 520, 190 (2012).

    Article  CAS  Google Scholar 

  26. L.-J. Li, X.-H. Li, Z.-X. Wang, H.-J. Guo, P. Yue, W. Chen and L. Wu, Powder Technol., 206, 353 (2011).

    Article  CAS  Google Scholar 

  27. J. J. Saavedra-Arias, C.V. Rao, J. Shojan, A. Manivannan, L. Torres, Y. Ishikawa and R. S. Katiyar, J. Power Sources, 211, 12 (2012).

    Article  CAS  Google Scholar 

  28. S. Choo, H.Y. Kim, D.Y. Yoon, W. Choi, S. H. Oh, J. B. Ju, J. M. Ko, H. Jang and W. I. Cho, Korean J. Chem. Eng., 31, 905 (2014).

    Article  CAS  Google Scholar 

  29. K. Wu, F. Wang, L. Gao, M.-R. Li, L. Xiao, L. Zhao, S. Hu, X. Wang, Z. Xu and Q. Wu, Electrochim. Acta, 75, 393 (2012).

    Article  CAS  Google Scholar 

  30. I. Belharouak, W. Lu, D. Vissers, and K. Amine, Electrochem. Commun., 8, 329 (2006).

    Article  CAS  Google Scholar 

  31. J. Ying, C. Wan, C. Jiang, and Y. Li, J. Power Sources, 99, 78 (2001).

    Article  CAS  Google Scholar 

  32. K.K. Cheralathan, N.Y. Kang, H. S. Park, Y. J. Lee, W.C. Choi, Y. S. Ko and Y. K. Park, J. Power Sources, 195, 1486 (2010).

    Article  CAS  Google Scholar 

  33. M.-H. Lee, Y.-J. Kang, S.-T. Myung and Y.-K. Sun, Electrochim. Acta, 50, 939 (2004).

    Article  CAS  Google Scholar 

  34. S. Zhang, C. Deng, B. L. Fu, S.Y. Yang and L. Ma, Powder Technol., 198, 373 (2010).

    Article  CAS  Google Scholar 

  35. C. Fu, G. Li, D. Luo, Q. Li, J. Fan and L. Li, ACS Appl. Mater. Interfaces, 6, 15822 (2014).

    Article  CAS  Google Scholar 

  36. F. Lin, I. M. Markus, M. M. Doeff and H. L. Xin, Sci. Rep., 4, 5694 (2014).

    CAS  Google Scholar 

  37. D. Luo, G. Li, C. Fu, J. Zheng, J. Fan, Q. Li and L. Li, J. Power Sources, 276, 238 (2015).

    Article  CAS  Google Scholar 

  38. J.-T. Son and E. Cairns, Korean J. Chem. Eng., 24, 888 (2007).

    Article  CAS  Google Scholar 

  39. O. Sekizawa, T. Hasegawa, N. Kitamura and Y. Idemoto, J. Power Sources, 196, 6651 (2011).

    Article  CAS  Google Scholar 

  40. J. Eom, M. G. Kim and J. Cho, J. Electrochem. Soc., 155, A239 (2008).

  41. H. Bang, D.-H. Kim, Y. C. Bae, J. Prakash and Y.-K. Sun, J. Electrochem. Soc., 155, A952 (2008).

  42. Y. Chen, Y. Zhang, B. Chen, Z. Wang and C. Lu, J. Power Sources, 256, 20 (2014).

    Article  CAS  Google Scholar 

  43. K. Liu, G.-L. Yang, Y. Dong, T. Shi and L. Chen, J. Power Sources, 281, 370 (2014).

    Article  Google Scholar 

  44. J. Zhao, S. Aziz and Y. Wang, J. Power Sources, 247, 95 (2014).

    Article  CAS  Google Scholar 

  45. K.-S. Lee, S.-T. Myung, K. Amine, H. Yashiro and Y.-K. Sun, J. Electrochem. Soc., 154, A971 (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-won Lee.

Additional information

This paper is submitted as a contribution to celebrating the honorable retirement of Prof. Hwayong Kim of Seoul National University. Copyright by The Korean Institute of Chemical Engineers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, DL., Lee, Jw. Properties of LiNi0.8Co0.1Mn0.1O2 as a high energy cathode material for lithium-ion batteries. Korean J. Chem. Eng. 33, 514–526 (2016). https://doi.org/10.1007/s11814-015-0154-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0154-3

Keywords

Navigation