Skip to main content
Log in

Adsorptive removal of acetaminophen and diclofenac using NaX nanozeolites synthesized by microwave method

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The adsorption of acetaminophen (ATP) and diclofenac (DCF) from aqueous systems was investigated using NaX nanozeolites synthesized by microwave heating method. The synthesized nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electronic microscopy (SEM), Brunauer-Emmet-Teller (BET), X-ray fluorescence (XRF) and dynamic light scattering (DLS) analysis. The effect of sorption parameters including adsorbent dosage, contact time, initial concentration and temperature on the removal of ATP and DCF was studied in a batch system. The kinetic data were analyzed using pseudo-first-order, pseudo-second-order and double-exponential kinetic models. The Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models were used to describe the equilibrium data of ATP and DCF. Thermodynamic parameters were determined to evaluate the nature of ATP and DCF sorption by NaX nanozeolites. The results showed that both ATP and DCF sorption processes were endothermic and spontaneous in the studied conditions. The reusability of NaX nanozeolites was also evaluated after four sorptiondesorption cycles. Moreover, this study provides a promising adsorbent with higher efficiency for adsorption of pharmaceutical compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kümmerer, J. Environ. Manage., 90, 2354 (2009).

    Article  Google Scholar 

  2. I. Sirés and E. Brillas, Environ. Inter, 40, 212 (2012).

    Article  Google Scholar 

  3. S. Esplugas, D. M. Bila, L. G. T. Krause and M. Dezotti, J. Hazard. Mater., 149, 631 (2007).

    Article  CAS  Google Scholar 

  4. P. Bartels and W. Von Tümpling, Sci. Total Environ., 374, 143 (2007).

    Article  CAS  Google Scholar 

  5. Y. Kim, K. Choi, J. Jung, S. Park, P.-G. Kim and J. Park, Environ. Int., 33, 370 (2007).

    Article  CAS  Google Scholar 

  6. L. Yang, L. E. Yu and M. B. Ray, Water Res., 42, 3480 (2008).

    Article  CAS  Google Scholar 

  7. A. Agüera, L. A. Pérez-Estrada, I. Ferrer, E. M. Thurman, S. Malato and A. R. Fernández-Alba, J. Mass Spectrom., 40, 908 (2005).

    Article  Google Scholar 

  8. A. Y. C. Lin and Y. T. Tsai, Sci. Total Environ., 407, 3793 (2009).

    Article  CAS  Google Scholar 

  9. S. Bae, D. Kim and W. Lee, Appl. Catal. B: Environ., 134, 93 (2013).

    Article  Google Scholar 

  10. K. Rzeszutek and A. Chow, Talanta, 46, 507 (1998).

    Article  CAS  Google Scholar 

  11. A. P. Annachhatre and S. H. Gheewala, Biotechnol. Adv., 14, 35 (1996).

    Article  CAS  Google Scholar 

  12. C. Mc. Manamon, J. D. Holmes and M. A. Morris, J. Hazard. Mater., 193, 120 (2011).

    Article  Google Scholar 

  13. T. X. Bui, S.-Y. Kang, S.-H. Lee and H. Choi, J. Hazard. Mater., 193, 156 (2011).

    Article  CAS  Google Scholar 

  14. N. Klamerth, K. Rizzo, S. Malato, M. I. Maldonado, A. Aguera and A. R. Fernandez-Alba, Water Res., 44, 545 (2010).

    Article  CAS  Google Scholar 

  15. L. C. Almeida, S. Garcia-Segura, N. Bocchi and E. Brillas, Appl. Catal. B: Environ., 103, 21 (2011).

    Article  CAS  Google Scholar 

  16. M. D. G. de Luna, M. L. Veciana, C. C. Su and M. C. Lu, J. Hazard. Mater., 217, 200 (2012).

    Article  Google Scholar 

  17. T. X. Bui and H. Choi, J. Hazard. Mater., 168, 602 (2009).

    Article  CAS  Google Scholar 

  18. Z. Yu, S. Peldszus and P. M. Huck, Water Res., 42, 2873 (2008).

    Article  CAS  Google Scholar 

  19. A. Rossner, S. A. Snyder and D. R. U. Knappe, Water Res., 43, 3787 (2009).

    Article  CAS  Google Scholar 

  20. T. X. Bui and H. Choi, J. Hazard. Mater., 168, 602 (2009).

    Article  CAS  Google Scholar 

  21. M. Antunes, V. I. Esteves, R. Guégan, J. S. Crespo, A. N. Fernandes and M. Giovanela, Chem. Eng. J., 192, 114 (2012).

    Article  CAS  Google Scholar 

  22. S. M. Rivera-Jimenez, S. Mendez-Gonzalez and A. Hernandez-Maldonado, Micropor. Mesopor. Mater., 132, 470 (2010).

    Article  CAS  Google Scholar 

  23. M. Khalid, G. Joly, A. Renaud and P. Magnoux, Ind. Eng. Chem. Res., 43, 3275 (2004).

    Article  Google Scholar 

  24. B. Z. Zhan, M. A. White, K. N. Robertson, T. S. Camerona and M. Gharghourib, Chem. Commun., 13, 1176 (2001).

    Article  Google Scholar 

  25. M. Ansari, A. Aroujalian, A. Raisi and M. Fathizadeh, Adv. Powder. Technol., 25, 722 (2014).

    Article  CAS  Google Scholar 

  26. M. Irani, A. R. Keshtkar and M. A. Mousaviana, Chem. Eng. J., 175, 251 (2011).

    Article  CAS  Google Scholar 

  27. M. Irani, A. R. Keshtkar and M. A. Mousavian, Korean J. Chem. Eng., 29, 1459 (2012).

    Article  CAS  Google Scholar 

  28. S. Lagergren, Handlingar, 24, 1 (1898).

    Google Scholar 

  29. Y. S. Ho and G. McKay, Process. Biochem., 34, 451 (1999).

    Article  CAS  Google Scholar 

  30. N. Chiron, R. Guilet and E. Deydier, Water Res., 37, 3079 (2003).

    Article  CAS  Google Scholar 

  31. H. M. F. Freundlich, J. Phys. Chem., 57, 385 (1906).

    CAS  Google Scholar 

  32. I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).

    Article  CAS  Google Scholar 

  33. M. I. Temkin and V. Pyzhev, Acta Physiochim., URSS 12, 327 (1940).

    CAS  Google Scholar 

  34. M. M. Dubinin, E. D. Zaverina and L. V. Radushkevich, Zhurnal Fizicheskoi Khimii, 21, 1351 (1947).

    CAS  Google Scholar 

  35. A. S. Mestre, A. S. Bexiga, M. Proença, M. Andrade, M. L. Pinto, I. Matos, I. M. Fonseca and A. P. Carvalho, Bioresour. Technol., 102, 8253 (2011).

    Article  CAS  Google Scholar 

  36. M. Galhetas, A. S. Mestre, M. L. Pinto, I. Gulyurtlu, H. Lopes and A. P. Carvalho, J. Colloid Interface Sci., 433, 94 (2014).

    Article  CAS  Google Scholar 

  37. M. Galhetas, A. S. Mestre, M. L. Pinto, I. Gulyurtlu, H. Lopes and A. P. Carvalho, Chem. Eng. J., 240, 344 (2014).

    Article  CAS  Google Scholar 

  38. M. Antunes, V. I. Esteves, R. Guégan, J. S. Crespo, A. N. Fernandes and M. Giovanela, Chem. Eng. J., 192, 114 (2012).

    Article  CAS  Google Scholar 

  39. C. M. Dai, S. U. Geissen, Y. L. Zhang, Y. J. Zhang and X. F. Zhou, Environ. Pollut., 159, 1660 (2011).

    Article  CAS  Google Scholar 

  40. N. Suriyanon, P. Punyapalakul and C. Ngamcharussrivichai, Chem. Eng. J., 214, 208 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Irani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rad, L.R., Irani, M. & Barzegar, R. Adsorptive removal of acetaminophen and diclofenac using NaX nanozeolites synthesized by microwave method. Korean J. Chem. Eng. 32, 1606–1612 (2015). https://doi.org/10.1007/s11814-014-0373-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0373-z

Keywords

Navigation