Skip to main content

Advertisement

Log in

Cyclic CO2 capture characteristics of a pellet derived from sol-gel CaO powder with Ca12Al14O33 support

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A novel calcium-based pellet was prepared by extrusion of sol-gel CaO powder and cement with high aluminum-based content. Limestone was used for comparison. The cyclic CO2 capture performance and carbonation kinetics of the sorbents were investigated in a thermogravimetric analyzer (TGA). The changes in phase and microstructure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer Emmet Teller (BET) surface area, respectively. The results indicate that the pellet consisted of CaO and Ca12Al14O33 after initial calcination. Limestone reactivity decreased dramatically with the increase in the cycle number, whereas the pellet showed a relatively stable cyclic CO2 capture performance with high reactivity. The CO2 capture capacity of the pellet achieved 0.43 g CO2/g sorbent after 50 cycles at 650 °C and 850 °C for carbonation and calcination, respectively. Moreover, the pellet obtained fast carbonation rates with slight decay after multiple cycles. The porous microstructure of the pellet contributed to the high reactivity of the sorbent during high temperature reactions, and the support material of Ca12Al14O33, enhanced the cyclic durability of the calcium-based sorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. MacDowell, N. Florin, A. Buchard, J. Hallett, A. Galindo, G. Jackson, C. S. Adjiman, C.K. Williams, N. Shah and P. Fennell, Energy Environ. Sci., 3, 1645 (2010).

    Article  CAS  Google Scholar 

  2. F.-C. Yu, N. Phalak, Z. Sun and L.-S. Fan, Ind. Eng. Chem. Res., 51, 2133 (2012).

    Article  CAS  Google Scholar 

  3. H. An, T. Song, L. Shen, L. Zhang and B. Feng, Ind. Eng. Chem. Res., 51, 13046 (2012).

    Article  CAS  Google Scholar 

  4. M. Zaman and J. H. Lee, Korean J. Chem. Eng., 30, 1497 (2013).

    Article  CAS  Google Scholar 

  5. U. Zahid, Y. Lim, J. Jung and C. Han, Korean J. Chem. Eng., 28, 674 (2011).

    Article  CAS  Google Scholar 

  6. J.H. Choi, C.K. Yi, S.H. Jo, H.J. Ryu and Y.C. Park, Korean J. Chem. Eng., 31, 194 (2014).

    Article  CAS  Google Scholar 

  7. C. C. Dean, J. Blamey, N. H. Florin, M. J. Al-Jeboori and P. S. Fennell, Chem. Eng. Res. Des., 89, 836 (2011).

    Article  CAS  Google Scholar 

  8. J. Blamey, E.J. Anthony, J. Wang and P.S. Fennell, Prog. Energy Combust, 36, 260 (2010).

    Article  CAS  Google Scholar 

  9. S. Wang, S. Fan, Y. Zhao, L. Fan, S. Liu and X. Ma, Ind. Eng. Chem. Res., 53, 10457 (2014).

    Article  CAS  Google Scholar 

  10. C.Q. Cao, K. Zhang, C.C. He, Y.A. Zhao and Q. J. Guo, Chem. Eng. Sci., 66, 375 (2011).

    Article  CAS  Google Scholar 

  11. J. C. Abanades, Chem. Eng. J., 90, 303 (2002).

    Article  CAS  Google Scholar 

  12. B. Feng, W.Q. Liu, X. Li and H. An, Energy Fuels, 20, 2417 (2006).

    Article  CAS  Google Scholar 

  13. F. Fang, Z. S. Li and N. S. Cai, Korean J. Chem. Eng., 26, 1414 (2009).

    Article  CAS  Google Scholar 

  14. T. Witoon, Ceram. Int., 37, 3291 (2011).

    Article  CAS  Google Scholar 

  15. G. S. Grasa and J. C. Abanades, Ind. Eng. Chem. Res., 45, 8846 (2006).

    Article  CAS  Google Scholar 

  16. W.Q. Liu, H. An, C.L. Qin, J. J. Yin, G.X. Wang, B. Feng and M.H. Xu, Energy Fuels, 26, 2751 (2012).

    Article  CAS  Google Scholar 

  17. R.Y. Sun, Y. J. Li, H.L. Liu, S.M. Wu and C.M. Lu, Appl. Energy, 89, 368 (2012).

    Article  CAS  Google Scholar 

  18. V. Manovic and E. J. Anthony, Environ. Sci. Technol., 43, 7117 (2009).

    Article  CAS  Google Scholar 

  19. C.-C. Li, U.-T. Wu and H.-P. Lin, J. Mater. Chem. A, 2, 8252 (2014).

    Article  Google Scholar 

  20. X. Zhang, Z. Li, Y. Peng, W. Su, X. Sun and J. Li, Chem. Eng. J., 243, 297 (2014).

    Article  CAS  Google Scholar 

  21. J. Yin, C. Qin, B. Feng, L. Ge, C. Luo, W. Liu and H. An, Energy Fuels, 28, 307 (2014).

    Article  CAS  Google Scholar 

  22. C. Qin, J. Yin, C. Luo, H. An, W. Liu and B. Feng, Chem. Eng. J., 228, 75 (2013).

    Article  CAS  Google Scholar 

  23. Y. J. Li, R.Y. Sun, H. L. Liu and C. M. Lu, Ind. Eng. Chem. Res., 50, 10222 (2011).

    Article  CAS  Google Scholar 

  24. H. C. Chen, C. S. Zhao, L. B. Duan, C. Liang, D. J. Liu and X. P. Chen, Fuel Process. Technol., 92, 493 (2011).

    Article  CAS  Google Scholar 

  25. C. Luo, Y. Zheng, N. Ding, Q.L. Wu, G.A. Bian and C.G. Zheng, Ind. Eng. Chem. Res., 49, 11778 (2010).

    Article  CAS  Google Scholar 

  26. M. Broda, A. M. Kierzkowska and C.R. Müller, ChemSusChem, 5, 411 (2012).

    Article  CAS  Google Scholar 

  27. A. Akgsornpeak, T. Witoon, T. Mungcharoen and J. Limtrakul, Chem. Eng. J., 237, 189 (2014).

    Article  CAS  Google Scholar 

  28. E.T. Santos, C. Alfonsín, A. J. S. Chambel, A. Fernandes, A.P. Soares Dias, C. I. C. Pinheiro and M. F. Ribeiro, Fuel, 94, 624 (2012).

    Article  CAS  Google Scholar 

  29. P. Xu, M. Xie, Z. Cheng and Z. Zhou, Ind. Eng. Chem. Res., 52, 12161 (2013).

    Article  CAS  Google Scholar 

  30. S.D. Angeli, C. S. Martavaltzi and A. A. Lemonidou, Fuel, 127, 62 (2014).

    Article  CAS  Google Scholar 

  31. A.M. Kierzkowska and C.R. Muller, Energy Environ. Sci., 5, 6061 (2012).

    Article  CAS  Google Scholar 

  32. C. Luo, Y. Zheng, C.G. Zheng, J. J. Yin, C.L. Qin and B. Feng, Int. J. Greenh. Gas Con., 12, 193 (2013).

    Article  CAS  Google Scholar 

  33. Z. S. Li, Y. Liu and N. S. Cai, Chem. Eng. Sci., 89, 235 (2013).

    Article  CAS  Google Scholar 

  34. C. Luo, Y. Zheng, N. Ding, Q.L. Wu and C.G. Zheng, Chin. Chem. Lett., 22, 615 (2011).

    Article  CAS  Google Scholar 

  35. Z. Zhou, Y. Qi, M. Xie, Z. Cheng and W. Yuan, Chem. Eng. Sci., 74, 172 (2012).

    Article  CAS  Google Scholar 

  36. K. Wang, X. Guo, P.F. Zhao and C.G. Zheng, Appl. Clay. Sci., 50, 41 (2010).

    Article  Google Scholar 

  37. V. Manovic and E. J. Anthony, Ind. Eng. Chem. Res., 49, 6916 (2010).

    Article  CAS  Google Scholar 

  38. Z. S. Li, N. S. Cai, Y.Y. Huang and H. J. Han, Energy Fuels, 19, 1447 (2005).

    Article  CAS  Google Scholar 

  39. C. S. Martavaltzi and A. A. Lemionidou, Ind. Eng. Chem. Res., 47, 9537 (2008).

    Article  CAS  Google Scholar 

  40. V. Manovic and E. J. Anthony, Ind. Eng. Chem. Res., 48, 8906 (2009).

    Article  CAS  Google Scholar 

  41. Z. S. Li, N. S. Cai and Y. Y. Huang, Ind. Eng. Chem. Res., 45, 1911 (2006).

    Article  CAS  Google Scholar 

  42. S. K. Bhatia and D. D. Perlmutter, AIChE J., 29, 79 (1983).

    Article  CAS  Google Scholar 

  43. C. Luo, Q.W. Shen, N. Ding, Z.X. Feng, Y. Zheng and C.G. Zheng, Chem. Eng. Technol., 35, 547 (2012).

    Article  CAS  Google Scholar 

  44. T. Witoon, T. Mungcharoen and J. Limtrakul, Appl. Energy, 118, 32 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, C., Zheng, Y., Xu, Y. et al. Cyclic CO2 capture characteristics of a pellet derived from sol-gel CaO powder with Ca12Al14O33 support. Korean J. Chem. Eng. 32, 934–938 (2015). https://doi.org/10.1007/s11814-014-0291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0291-0

Keywords

Navigation