Skip to main content
Log in

Microscopical characterizations of nanofiltration membranes for the removal of nickel ions from aqueous solution

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The nanofiltration (NF) process is electrostatically governed and the surface free energy plays a key role in the separation of particulates, macromolecules, and dissolved ionic species. Streaming potential measurement and the surface charge mapping by Kelvin probe atomic force mircoscopy (AFM) have been carried out. Forces of interaction near the surface of nanofiltration membranes were further studied by a force spectroscopy using atomic force microscopy. The two membranes used are more negatively charged at high pH values; hence the higher the solution chemistry, the higher and faster will be adhesion of ions on the surface of the nanofiltration membranes. It was observed that the three acquired signals from non-contact AFM (contact potential difference, amplitude and phase) were rigorously connected to the surface structure of the nanofiltration membranes. In addition to the surface structure (roughness), electrostatic interactions can also enhance initial particle adhesion to surfaces of nanofiltration membranes. The performance of the NF membranes was further investigated for the removal of nickel ions from aqueous solution, and the results were correlated to the mechanical responses of the nanofiltration membranes obtained from AFM and the streaming potential measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Bowen, T. A. Doneva and A. G. Stoton, Colloids Surf. A, 201, 73 (2002).

    Article  CAS  Google Scholar 

  2. P.T. Serrano, S. Yiacoumi and C. Tsouris, J. Chem. Phys., 125, 1 (2006).

    Google Scholar 

  3. I.H. Huisman, G. Trädårdh, C. Trädårdh and A. Pihlajamäki, J. Membr. Sci., 147, 187 (1998).

    Article  CAS  Google Scholar 

  4. A. E. Childress and M. Elimelech, Environ. Sci. Technol., 34, 3710 (2000).

    Article  CAS  Google Scholar 

  5. M. J. Ariza and J. Benavente, J. Membr. Sci., 190, 119 (2001).

    Article  CAS  Google Scholar 

  6. H. Bukšek, T. Luxbacher and I. Petrinic, Acta Chim. Slovenica, 57, 700 (2010).

    Google Scholar 

  7. A. Tiraferri and M. A. Elimelech, J. Membr. Sci., 389, 499 (2012).

    Article  CAS  Google Scholar 

  8. Y. Shim, H. J. Lee, S. Lee, S.H. Moon and J. Cho, Environ. Sci. Technol., 36, 3864 (2002).

    Article  CAS  Google Scholar 

  9. A. E. Childress and M. J. Elimelech, J. Membr. Sci., 119, 253 (1996).

    Article  CAS  Google Scholar 

  10. J. A. Brant and A. E. Childress, J. Membr. Sci., 203, 257 (2002).

    Article  CAS  Google Scholar 

  11. S. Kaminski and M.A. Mroginski, J. Phys. Chem. B, 114, 16677 (2010).

    Article  CAS  Google Scholar 

  12. L. Wang, Molecular dynamics simulations of liquid transport through nanofiltration membranes, Doctoral dissertation, McMaster University, Ontario, Canada (2012).

    Google Scholar 

  13. R. Renou, A. Ghoufi, A. Szymczyk, H. Zhu, J.C. Neyt and P. Malfreyt, J. Phys. Chem. C, 117, 11017 (2013).

    Article  CAS  Google Scholar 

  14. E. M. Vrijenhoek, S. Hong and M. Elimelech, J. Membr. Sci., 118, 115 (2001).

    Article  Google Scholar 

  15. W. Song, V. Ravindran, B. E. Koel and M. Pirbazari, J. Membr. Sci., 241, 143 (2004).

    Article  CAS  Google Scholar 

  16. V. Freger, Langmuir, 19, 4791 (2003).

    Article  CAS  Google Scholar 

  17. J. A. Brant, K. M. Johnson and A. E. Childress, J. Membr. Sci., 276, 286 (2006).

    Article  CAS  Google Scholar 

  18. A. Akbari, M. Homayoonfal and V. Jabbari, Water Sci. Technol., 64, 2404 (2011).

    Article  CAS  Google Scholar 

  19. N. Dipankar, T. Kuo-Lun, H. Chi-Chung, C. Ching-Jung, R. Ruoh- Chyu, C. Yan-Che, C. Chih-Shen and W. Tien-Hwa, Desalination, 234, 344 (2008).

    Article  Google Scholar 

  20. A. I. Schäfer, A. Pihlajamäki, A. G. Fane, T.D. Waite and M. Nyström, J. Membr. Sci., 242, 73 (2004).

    Article  Google Scholar 

  21. B. Dahmani and M. Chabene, J. Chem. Eng. Process Technol., 2, 103 (2011).

    CAS  Google Scholar 

  22. K. H. Choo, D. J. Kwon, K.W. Lee and S. J. Choi, Environ. Sci. Technol., 36, 1330 (2002).

    Article  CAS  Google Scholar 

  23. Z. Ji, H. Dong, M. Liu and W. Hu, Nano Res., 2, 857 (2009).

    Article  CAS  Google Scholar 

  24. B. Rezek, E. Ukraintsev and A. Kromka, Nanoscale Res. Lett., 6, 337 (2011).

    Article  Google Scholar 

  25. R. Dianoux, F. Martin, F. Marchi, C. Alandi and F. Comin, J. Chevrier, Phys. Rev. B, 68, 454031 (2003).

    Google Scholar 

  26. L. Boyer, F. Houze, A. Tonck, J. L. Loubet and J.M. Georges, J. Phy. D: Appl. Phys., 27, 1504 (1994).

    Article  Google Scholar 

  27. H.W. Hao, A.M. Baro and J. J Saenz, J. Vac. Sci. Technol. B, 9, 1323 (1991).

    Article  Google Scholar 

  28. O. Agboola, J. Maree, R. Mbaya, C.M. Zvinowanda, G.F. Molelekwa, N. Jullok, B. Van der Bruggen, A. Volodine and C. Van Haesendonck, Korean J. Chem. Eng., 31(8), 1413 (2014).

    Article  CAS  Google Scholar 

  29. J. Kim and B. Van der Bruggen, Environ. Pollut., 158, 2225 (2010).

    Google Scholar 

  30. M. M. Pendergast and E. M.V. Hoek, Energy Environ. Sci., 4, 1946 (2011).

    Article  CAS  Google Scholar 

  31. C.A. Crock, A.R. Rogensues, W. Shan and V.V. Tarabara, Water Res., 47, 3984 (2013).

    Article  CAS  Google Scholar 

  32. I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero and A.M. Baro, Rev. Sci. Instrum., 78, 013705 (2007).

    Article  CAS  Google Scholar 

  33. B. Cappella and G. Dietler, Surf. Sci. Rep., 34, 1 (1999).

    Article  CAS  Google Scholar 

  34. P. Fontaine, P. Guenoun and J. A. Daillant, Rev. Sci. Instrum., 68, 4145 (1997).

    Article  CAS  Google Scholar 

  35. P. L. T.M. Frederix, P.D. Bosshart and A. Engel, Biophy. J., 96, 329 (2009).

    Article  CAS  Google Scholar 

  36. J. Welker, E. IIIek and F. J. Giessibi, Beilstein J. Nanotechnol., 3, 238 (2012).

    Article  CAS  Google Scholar 

  37. B.W. Hoogenboom, H. J. Hug, Y. Pellmont, S. Martin and P.L.T.M. Frederix, Appl. Phys. Lett., 88, 1931091 (2006).

    Article  Google Scholar 

  38. T. Fukuma, K. Kobayashi, K. Matsushige and H. Yamada, Appl. Phys. Lett., 88, 193109 (2005).

    Google Scholar 

  39. R.W. Bowen and A.W. Mohammad, Chem. Engin. Res. Des., 76, 885 (1998).

    Article  CAS  Google Scholar 

  40. M. Elimelech, W.H. Chen and J. J. Waypa, Desalination, 95, 269 (1994).

    Article  CAS  Google Scholar 

  41. W.R. Bowen, N. Hilal, R.W. Lovitt and C. J. Wright, J. Membr. Sci., 139, 269 (1998).

    Article  CAS  Google Scholar 

  42. J.A. Brant, K.M. Johnson and A.E. Childress, Colloids Surf., A., 280, 45 (2006).

    Article  CAS  Google Scholar 

  43. N.M. Sidek, N. Ali and S. A. A. Fauzi, The governing factors of nanofiltration membranes separation process performance: A review, Empowering Science, Technology and Innovation Towards Better Tomorrow, EP33, UMTAS (2011).

    Google Scholar 

  44. P. Berg, G. Hagmeyer and R. Gimbel, Desalination, 113, 205 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluranti Agboola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agboola, O., Maree, J., Mbaya, R. et al. Microscopical characterizations of nanofiltration membranes for the removal of nickel ions from aqueous solution. Korean J. Chem. Eng. 32, 731–742 (2015). https://doi.org/10.1007/s11814-014-0290-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0290-1

Keywords

Navigation