Skip to main content
Log in

Study on the thin film composite poly(piperazine-amide) nanofiltration membranes made of different polymeric substrates: Effect of operating conditions

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Three composite nanofiltration (NF) membranes made of different substrate materials—polysulfone (PSf), polyethersulfone (PES) and polyetherimide (PEI)—were successfully prepared by interfacial polymerization technique. Prior to filtration tests, the composite NF membranes were characterized using field emission scanning electron microscope (FESEM), atomic force microscope (AFM) and X-ray photoelectron spectroscope (XPS). It was observed that the surface properties of composite NF membranes were obviously altered with the use of different substrate materials. The separation performance of the prepared composite NF membranes was further evaluated by varying operating conditions, which included feed salt concentration and operating temperature. Experimental results showed that the water flux of all TFC membranes tended to decrease with increasing Na2SO4 concentration in feed solution, due to the increase in feed osmotic pressure. Of the three TFC membranes studied, PSf-based membrane demonstrated the highest salt rejection but lowest water flux owing to its highest degree of polyamide cross-linking as shown in XPS data. With respect to thermal stability, PEI-based TFC membrane outperformed the rest, overcoming the trade-off effect between permeability and rejection when the feed solution temperature was gradually increased from 30 °C to 80 °C. In addition, the relatively smoother surface of hydrophilic PEI-based membrane when compared with PSf-based membrane was found to be less susceptible to BSA foulants, leading to lower flux decline. This is because smoother surface of polyamide layer would have minimum “valley clogging,” which improves membrane anti-fouling resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Chen, D. J. Chang, R. M. Liou, C. S. Hsu and S. S. Lin, J. Appl. Polym. Sci., 83, 1112 (2002).

    Article  CAS  Google Scholar 

  2. W. J. Lau, A. F. Ismail, P. S. Goh, N. Hilal and B. S. Ooi, Sep. Purif. Rev., DOI:10.1080/15422119.2014.882355.

  3. P. Eriksson, Environ. Prog., 7, 58 (1988).

    Article  CAS  Google Scholar 

  4. F. Liu, G. Zhang, Q. Meng and H. Zhang, Chin. J. Chem. Eng., 16, 441 (2008).

    Article  Google Scholar 

  5. A. Rahimpour, M. Jahanshahi, N. Mortazavian, S. S. Madaeni and Y. Mansourpanah, Appl. Surf. Sci., 256, 1657 (2010).

    Article  CAS  Google Scholar 

  6. D. Hu, Z. L. Xu and C. Chen, Desalination, 301, 75 (2012).

    Article  CAS  Google Scholar 

  7. A. L. Ahmad, B. S. Ooi, A. Wahab Mohammad and J. P. Choudhury, J. Appl. Polym. Sci., 94, 394 (2004).

    Article  CAS  Google Scholar 

  8. J. Jegal, S.G. Min and K.H. Lee, J. Appl. Polym. Sci., 86, 2781 (2002).

    Article  CAS  Google Scholar 

  9. M. Namvar-Mahboub and M. Pakizeh, Korean J. Chem. Eng., 31, 327 (2014).

    Article  CAS  Google Scholar 

  10. W. J. Lau, A. F. Ismail, N. Misdan and M. A. Kassim, Desalination, 287, 190 (2012).

    Article  CAS  Google Scholar 

  11. L. Hu, S. Zhang, R. Han and X. Jian, Appl. Surf. Sci., 258, 9047 (2012).

    Article  CAS  Google Scholar 

  12. N. Misdan, W. J. Lau and A.F. Ismail, Desalination, 287, 228 (2012).

    Article  CAS  Google Scholar 

  13. D. Li and H. Wang, J. Mater. Chem., 20, 4551 (2010).

    Article  CAS  Google Scholar 

  14. J. Wei, X. Jian, C. Wu, S. Zhang and C. Yan, J. Membr. Sci., 256, 116 (2005).

    CAS  Google Scholar 

  15. E. S. Kim, Y. J. Kim, Q. Yu and B. Deng, J. Membr. Sci., 344, 71 (2009).

    Article  CAS  Google Scholar 

  16. H. I. Kim and S. S. Kim, J. Membr. Sci., 286, 193 (2006).

    Article  CAS  Google Scholar 

  17. S. Verissimo, K.V. Peinemann and J. Bordado, J. Membr. Sci., 279, 266 (2006).

    Article  CAS  Google Scholar 

  18. M. Namvar-Mahboub and M. Pakizeh, Sep. Purif. Technol., 119, 35 (2013).

    Article  CAS  Google Scholar 

  19. C.R. Wu, S. H. Zhang, D. L. Yang, J. Wei, C. Yan and X. G. Jian, J. Membr. Sci., 279, 238 (2006).

    Article  CAS  Google Scholar 

  20. R. Han, S. Zhang, L. Hu, S. Guan and X. Jian, J. Membr. Sci., 370, 91 (2011).

    Article  CAS  Google Scholar 

  21. N. Fujiwara and H. Matsuyama, Desalination, 227, 295 (2008).

    Article  CAS  Google Scholar 

  22. O. Kedem and A. Katchalsky, Trans Faraday Soc., 59, 1918 (1963).

    Article  Google Scholar 

  23. M. Pontie, H. Buisson, C. K. Diawara and H. Essis-Tome, Desalination, 157, 127 (2003).

    Article  CAS  Google Scholar 

  24. A.M. Hidalgo, G. Leon, M. Gomez, M.D. Murcia, E. Gomez and J. L. Gomez, Desalination, 315, 70 (2013).

    Article  CAS  Google Scholar 

  25. K. S. Spiegler and O. Kedem, Desalination, 1, 311 (1966).

    Article  CAS  Google Scholar 

  26. J. Schaep, B. Van der Bruggen, C. Vandecasteele and D. Wilms, Sep. Purif. Technol., 14, 155 (1998).

    Article  CAS  Google Scholar 

  27. G.M. Geise, H.B. Park, A.C. Sagle, B.D. Freeman and J.E. McGrath, J. Membr. Sci., 369, 130 (2011).

    Article  CAS  Google Scholar 

  28. H. K. Lonsdale, U. Merten and R. L. Riley, J. Appl. Polym. Sci., 9, 1341 (1965).

    Article  CAS  Google Scholar 

  29. D. R. Paul, J. Membr. Sci., 241, 371 (2004).

    Article  CAS  Google Scholar 

  30. T. Matsuura, Synthetic Membranes and Membrane Separation Processes, CRC Press (1993).

    Google Scholar 

  31. N. Misdan, W. J. Lau, A. F. Ismail, T. Matsuura and D. Rana, Desalination, 344, 198 (2014).

    Article  CAS  Google Scholar 

  32. W. J. Lau and A. F. Ismail, Desalination, 245, 198 (2009).

    Article  Google Scholar 

  33. C. S. Ong, W. J. Lau and A. F. Ismail, Desalin. Water Treat., 50, 245 (2012).

    Article  CAS  Google Scholar 

  34. A. F. Ismail and W. J. Lau, Desalin. Water Treat., 6, 281 (2009).

    Article  CAS  Google Scholar 

  35. H. Mehdizadeh, J. M. Dickson and P. K. Eriksson, Ind. Eng. Chem. Res., 28, 814 (1989).

    Article  CAS  Google Scholar 

  36. R.R. Sharma and S. Chellam, Environ. Sci. Technol., 39, 5022 (2005).

    Article  CAS  Google Scholar 

  37. K. Kulisa, Chem. Anal., 49, 665 (2004).

    CAS  Google Scholar 

  38. E. M. Vrijenhoek, S. Hong and M. Elimelech, J. Membr. Sci., 188, 115 (2001).

    Article  CAS  Google Scholar 

  39. N. Misdan, W. J. Lau, A.F. Ismail and T. Matsuura, Desalination, 329, 9 (2013).

    Article  CAS  Google Scholar 

  40. C. Z. Liang, S. P. Sun, F.Y. Li, Y. K. Ong and T. S. Chung, J. Membr. Sci., 469, 306 (2014).

    Article  CAS  Google Scholar 

  41. Y. K. Ong, F.Y. Li, S.P. Sun, B.W. Zhao, C. Z. Liang and T. S. Chung, Chem. Eng. Sci., 114, 51 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Fauzi Ismail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misdan, N., Lau, W.J., Ong, C.S. et al. Study on the thin film composite poly(piperazine-amide) nanofiltration membranes made of different polymeric substrates: Effect of operating conditions. Korean J. Chem. Eng. 32, 753–760 (2015). https://doi.org/10.1007/s11814-014-0261-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0261-6

Keywords

Navigation