Skip to main content
Log in

Turbulent flow and mixing performance of a novel six-blade grid disc impeller

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A novel six-blade grid disc impeller (RT-G) was designed and the single-phase turbulent flow and mixing in a baffled stirred tank agitated by this impeller were numerically studied by detached eddy simulation (DES) model. For comparison, a standard Rushton impeller (RT) with the same dimension was also investigated. The numerical results were compared with the reported experimental data and good agreements were obtained. Comparisons of the mean velocity, turbulent kinetic energy, power consumption and mixing time of RT and RT-G were performed. Results show that, for the tank stirred with RT-G, the velocity components can be increased in comparison with RT when the same power is consumed. The increase of the turbulent kinetic energy is about 20–30%. Besides, the mixing time for the tank stirred with RT-G is about 11% shorter than that of RT stirred tank operated at the same condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kordas, G. Story, M. Konopacki and R. Rakoczy, Ind. Eng. Chem. Res., 52, 13818 (2013).

    Article  CAS  Google Scholar 

  2. D. J. Lamberto, F. J. Muzzio and P. D. Swanson, Chem. Eng. Sci., 51, 733 (1996).

    Article  CAS  Google Scholar 

  3. S. Roy and S. Acharya, Chem. Eng. Res. Des., 90, 884 (2012).

    Article  CAS  Google Scholar 

  4. W. G. Yao, H. Sato, K. Takahashi and K. Koyama, Chem. Eng. Sci., 53, 3031 (1998).

    Article  CAS  Google Scholar 

  5. M. Yoshida, M. Shigeyama, T. Hiura, K. Yamagiwa, A. Ohkawa and S. Tezura, Chem. Eng. Commun., 194, 1229 (2007).

    Article  CAS  Google Scholar 

  6. D. Bulnes-Abundis and M. M. Alvarez, AIChE J., 59, 3092 (2013).

    Article  CAS  Google Scholar 

  7. A. Hidalgo-Millán, E. Soto, R. Zenit and G. Ascanio, Can. J. Chem. Eng., 89, 1051 (2011).

    Article  Google Scholar 

  8. J. Karcz, M. Cudak and J. Szoplik, Chem. Eng. Sci., 60, 2369 (2005).

    Article  CAS  Google Scholar 

  9. G. Montante, A. Bakker, A. Paglianti and F. Magelli, Chem. Eng. Sci., 61, 2807 (2006).

    Article  CAS  Google Scholar 

  10. S. Woziwodzki, L. Broniarz-Press and M. Ochowiak, Chem. Eng. Res. Des., 88, 1607 (2010).

    Article  CAS  Google Scholar 

  11. K. Takahashi, J. Chem. Eng. Jpn., 40, 605 (2007).

    Article  CAS  Google Scholar 

  12. V. Buwa, A. Dewan, A.F. Nassar and F. Durst, Chem. Eng. Sci., 61, 2815 (2006).

    Article  CAS  Google Scholar 

  13. M. Campolo, A. Paglianti and A. Soldati, Ind. Eng. Chem. Res., 41, 164 (2002).

    Article  CAS  Google Scholar 

  14. N. J. Fentiman, N. St. Hill, K. C. Lee, G.R. Paul and M. Yianneskis, Chem. Eng. Res. Des., 76, 835 (1998).

    Article  CAS  Google Scholar 

  15. Z.H. Liu, X.Y. Yang, Z.M. Xie, R.L. Liu, C.Y. Tao and Y.D. Wang, CIESC J., 64, 2794 (2013).

    CAS  Google Scholar 

  16. E. S. Szalai, P. Arratia, K. Johnson and F. J. Muzzio, Chem. Eng. Sci., 59, 3793 (2004).

    Article  CAS  Google Scholar 

  17. A. Brucato, M. Ciofalo, F. Grisafi and G. Micale, Chem. Eng. Sci., 53, 3653 (1998).

    Article  CAS  Google Scholar 

  18. M. Jenne and M. Reuss, Chem. Eng. Sci., 54, 3921 (1999).

    Article  CAS  Google Scholar 

  19. B. N. Murthy and J. B. Joshi, Chem. Eng. Sci., 63, 5468 (2008).

    Article  CAS  Google Scholar 

  20. W. Bujalski, Z. Jaworski and A.W. Nienow, Chem. Eng. Res. Des., 80, 97 (2002).

    Article  CAS  Google Scholar 

  21. Z. Jaworski, W. Bujalski, N. Otomo and A.W. Nienow, Chem. Eng. Res. Des., 78, 327 (2000).

    Article  CAS  Google Scholar 

  22. J. J. Osman and J. Varley, IChemE Symp. Ser., 146, 15 (1999).

    Google Scholar 

  23. J. Gimbun, C.D. Rielly, Z.K. Nagy and J. J. Derksen, AIChE J., 58, 3224 (2012).

    Article  CAS  Google Scholar 

  24. F.L. Yang, S. J. Zhou and G.C. Wang, Comput. Fluids, 64, 74 (2012).

    Article  Google Scholar 

  25. F.L. Yang, S. J. Zhou, C.X. Zhang, G.M. Evans and G.C. Wang, Chem. Eng. Commun., 200, 1347 (2013).

    Article  CAS  Google Scholar 

  26. F. L. Yang, S. J. Zhou, C. X. Zhang and G. C. Wang, Korean J. Chem. Eng., 30, 1843 (2013).

    Article  CAS  Google Scholar 

  27. R. Zadghaffari, J. S. Moghaddas and J. Revstedt, Comput. Fluids, 39, 1183 (2010).

    Article  Google Scholar 

  28. J. Revstedt, L. Fuchs and C. Trägårdh, Chem. Eng. Sci., 53, 4041 (1998).

    Article  CAS  Google Scholar 

  29. R. M. Hockey, Ph.D. Thesis, Imperial College, London (1990).

  30. K. H. Javed, T. Mahmud and J. M. Zhu, Chem. Eng. Process., 45, 99 (2006).

    Article  CAS  Google Scholar 

  31. M.M. Alvarez, T. Shinbrot, J. Zalc and F. J. Muzzio, Chem. Eng. Sci., 57, 3749 (2002).

    Article  Google Scholar 

  32. A. Delafosse, A. Line, J. Morchain and P. Guiraud, Chem. Eng. Res. Des., 86, 1322 (2008).

    Article  CAS  Google Scholar 

  33. A. Togatorop and R. Mann, AIChE Symp. Ser., 90, 19 (1994).

    Google Scholar 

  34. M. F.W. Distelhoff, A. J. Marquis, J. M. Nouri and J.H. Whitelaw, Can. J. Chem. Eng., 75, 641 (1997).

    Article  CAS  Google Scholar 

  35. G. Ascanio, B. Castro and E. Galindo, Chem. Eng. Res. Des., 82, 1282 (2004).

    Article  CAS  Google Scholar 

  36. A.D. Harvey and S. E. Rogers, AIChE J., 42, 2701 (1996).

    Article  CAS  Google Scholar 

  37. S. S. Murthy and S. Jayanti, Chem. Eng. Res. Des., 80, 482 (2002).

    Article  Google Scholar 

  38. K. Rutherford, K.C. Lee, S.M.S. Mahmoudi and M. Yianneskis, AIChE J., 42, 332 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Ling Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F.L., Zhou, S.J. & Zhang, C.X. Turbulent flow and mixing performance of a novel six-blade grid disc impeller. Korean J. Chem. Eng. 32, 816–825 (2015). https://doi.org/10.1007/s11814-014-0255-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0255-4

Keywords

Navigation