Skip to main content
Log in

Preparation and investigation of the physical and chemical properties of clay-based polyacrylamide/Cr (III) hydrogels as a water shut-off agent in oil reservoirs

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effects of clay (montmorillonite and kaolinite) in the hydrogels were investigated on various properties such as syneresis and strength of thermal and salinity situations in one of the southern Iranian oil reservoirs. The X-ray diffraction (XRD) patterns exhibited a significant increase in interplanar spacing between the montmorillonite clay layers, varying from the initial value of 12.43 °A to 19.45 °A, which evidences the intercalation formation. It was revealed that even increasing of the interlayer spacing due to kaolinite modification had no effect on the clay compositions. Formation water was used to study the strength of the hydrogel in the presence of ions. The results indicated that 15 wt% increase of kaolinite clay (modified and non-modified) leads to 20% decrease of the hydrogels’ syneresis. The diffusion of polymer chains between the clay layers increased the elastic modulus (G′) of the prepared hydrogels with modified kaolinite and montmorillonite, where the maximum value of G’ was observed in 3 wt% of montmorillonite. Finally, the thermogravimetric analysis (TGA) indicated an increase in the thermal stability of the mentioned hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. B. Thomas, D. B. Bennio, G. E. Anderson and B. T. Meldrum, J. Can. Petrol. Technol., 39(4), 47 (2000).

    Article  Google Scholar 

  2. M. Simjoo, M. Vafaie Sefti, A. Dadvand Koohi, R. Hasheminasab and V. A. Sajjadian, Iran. J.Chem. Chem. Eng., 26(4), 99 (2007).

    CAS  Google Scholar 

  3. E. Bedaiwi, B. D. Al-Anazi, A. F. Al-Anazi and A. M. Paiaman, NAFTA., 60(4), 221 (2009).

    CAS  Google Scholar 

  4. M. S. Al-Anazi, S. H. Al-Mutairi, M. H. Alkhaldi, A. A. Al-zahrani, I. S. Al-Yami and M. N. Gurmen, The Netherlands, June 7–10, 2011 (Paper 144082).

    Google Scholar 

  5. M. Simjoo, Gel Polymer Performance for Reducing. Water Cut in Producing Well, M.Sc. Thesis, Petroleum University of Technology, Iran (2006).

    Google Scholar 

  6. K. Haraguchi, H. Li, K. Matsuda, T. Takehisa and E. Elliott, Macromolecules, 38(8), 3482 (2005).

    Article  CAS  Google Scholar 

  7. H. A. Nasr-El-Din and K. C. Taylor, J. Pet. Sci. Eng., 48(3), 141 (2005).

    Article  CAS  Google Scholar 

  8. X. Xia, J. Yih, N. A. D’Souza and Z. Hu, Polymer, 44(11), 3389 (2003).

    Article  CAS  Google Scholar 

  9. S.G. Starodoubtsev, N. A. Churochkina and A.R. Khokhlov, Langmuir, 16(4), 1529 (2000).

    Article  CAS  Google Scholar 

  10. J. Nie, B. Du and W. Oppermann, Macromolecules, 38(13), 5729 (2005).

    Article  CAS  Google Scholar 

  11. W. F. Lee and S. C. Lee, J. Appl. Polym. Sci., 100(1), 500 (2006).

    Article  CAS  Google Scholar 

  12. B. K.G. Theng, Formation and properties of clay-polymer complexes, 2rd Elsevier Science (2012).

    Google Scholar 

  13. N. Ogata, S. Kawakage and T. Ikada, Polymer, 38(20), 5115 (1997).

    Article  CAS  Google Scholar 

  14. R. A. Dawe and Y. Zhang, J. Pet. Sci. Eng., 12(2), 113 (1994).

    Article  CAS  Google Scholar 

  15. D. Gao and R. B. Heimann, Poly. Gels. Netw., 1(4), 225 (1993).

    Article  CAS  Google Scholar 

  16. N. A. Churochkina, S.G. Starodoubtsev and A. R. Khokhlov, Poly. Gels. Netw., 6(3–4), 205 (1998).

    Article  CAS  Google Scholar 

  17. J. Aalaie and A. Rahmatpour, J. Macromol. Sci. Phy., 47(1), 98 (2008).

    Article  CAS  Google Scholar 

  18. J. Aalaie, E. Vasheghani-Farahani, A. Rahmatpour and M. A. Semsarzadeh, Eur. Polym. J., 44(7), 2024 (2008).

    Article  CAS  Google Scholar 

  19. K. Kabiri and M. J. Zohuriaan-Mehr, Macromol. Mater. Eng., 289(7), 653 (2004).

    Article  CAS  Google Scholar 

  20. M. S. Nasser and A. E. James, Colloids Surf., A, 301(1), 311 (2007).

    Article  CAS  Google Scholar 

  21. M. Sirousazar, M. Kokabi, Z.M. Hassan and A. R. Bahramian, J. Appl. Polym. Sci., 125(1), 122 (2012).

    Article  Google Scholar 

  22. J. E. Gardolinski, L. P. Ramos, G. Souza and Y. F. Wypych, J. Colloid Interface Sci., 221(2), 284 (2000).

    Article  CAS  Google Scholar 

  23. R. Zolfaghari, A. A. Katbab, J. Nabavizadeh, T. R. Yousefzadeh and M. Hossein Nejad, J. Appl. Polym. Sci., 100(3), 2096 (2006).

    Article  CAS  Google Scholar 

  24. D. M. Moore and R.C. Reynolds, X-ray diffraction and the identification and analysis of clay minerals, Oxford University Press, New York (1997).

    Google Scholar 

  25. F. Santiago, A. E. Mucientes, M. Osorio and C. Rivera, Eur. Polym. J., 43(1), 1 (2007).

    Article  CAS  Google Scholar 

  26. H. A. Essawy, Colloid. Polym. Sci., 286(6–7), 795 (2008).

    Article  CAS  Google Scholar 

  27. B. Baojun, L. Liangxiong, L. Yuzhang, W. Zhongguo and L. He, In: Proceedings of SPE/DOE Symposium of Improved Oil Recovery, Tulsa, Oklahoma, USA, April 17–21, 89389 (2004).

    Google Scholar 

  28. R. E. White, Principles and practice of soil science: The soil as a natural resource, Wiley-Blackwell (2005).

    Google Scholar 

  29. H. Shi, T. Lan and T. J. Pinnavaia, Chem. Mater., 8(8), 1584 (1996).

    Article  CAS  Google Scholar 

  30. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi and O. Kamigaito, J. Mater. Res., 8(5), 1185 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Vafaie Sefti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salimi, F., Sefti, M.V., Jarrahian, K. et al. Preparation and investigation of the physical and chemical properties of clay-based polyacrylamide/Cr (III) hydrogels as a water shut-off agent in oil reservoirs. Korean J. Chem. Eng. 31, 986–993 (2014). https://doi.org/10.1007/s11814-014-0023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0023-5

Keywords

Navigation