Skip to main content
Log in

CH4 reforming with CO2 for syngas production over nickel catalysts supported on mesoporous nanostructured γ-Al2O3

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Nanostructured γ-Al2O3 with high surface area and mesoporous structure was synthesized by sol-gel method and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by XRD, BET, TPR, TPH, SEM and TPO techniques. The BET analysis showed a high surface area of 204m2g−1 and a narrow pore-size distribution centered at a diameter of 5.5 nm for catalyst support. The results revealed that an increase in nickel loading from 5 to 15 wt% decreased the surface area of catalyst from 182 to 160 m2g−1. In addition, the catalytic results showed an increase in methane conversion with increase in nickel content. TPO analysis revealed that the coke deposition increased with increasing in nickel loading, and the catalyst with 15 wt% of nickel showed the highest degree of carbon formation. SEM and TPH analyses confirmed the formation of whisker type carbon over the spent catalysts. Increasing CO2/CH4 ratio increased the methane conversion. The BET analysis of spent catalysts indicated that the mesoporous structure of catalysts still remained after reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. X. Dongyan, L. Wenzhao, G. Qingjie and X. Hengyong, Fuel Process Technol., 86, 995 (2005).

    Article  Google Scholar 

  2. J. Juan-Juan, M. C. Roman-Martinez and M. J. Illan-Gomez, Appl. Catal. A., 359, 27 (2009).

    Article  Google Scholar 

  3. B. Zheng, Y. Jianhua, L. Xiaodong, C. Yong and C. Kefa, Int. J. Hydrog. Energy, 33, 5545 (2008).

    Article  Google Scholar 

  4. A. E. Luna and M. E. Iriarte, Appl. Catal. A., 343, 10 (2008).

    Article  Google Scholar 

  5. M. Rezaei, S. M. Alavi, S. Sahebdelfar and Z. F. Yan, J Nat. Gas Chem., 15, 327 (2006).

    Article  CAS  Google Scholar 

  6. B. Nematolahi, M. Rezaei and M. Khajenoori, Int. J. Hydrog. Energy, 36, 2969 (2011).

    Article  Google Scholar 

  7. E. Navaei and M. Rezaei, Scripta Mater., 61, 212 (2009).

    Article  Google Scholar 

  8. S. Therdthianwong, A. Therdthianwong, C. Siangchin and S. Yongprapat, Int. J. Hydrog. Energy, 33, 991 (2008).

    Article  CAS  Google Scholar 

  9. E. Ruckenstein and H. Y. Wang, J. Catal., 205, 289 (2002).

    Article  CAS  Google Scholar 

  10. J.M. Rynkowski, T. Paryjczak and M. Lenik, Appl. Catal. A., 106, 73 (1993).

    Article  CAS  Google Scholar 

  11. H. Mori, C. Wen, J. Otomo, K. Eguchi and H. Takahashi, Appl. Catal. A., 245, 79 (2003).

    Article  CAS  Google Scholar 

  12. C. H. Bartholomew, Catal. Rev. Sci. Eng., 24, 67 (1982).

    Article  CAS  Google Scholar 

  13. C. Mirodatos, H. Praliaud and M. Primet, J. Catal., 107, 275 (1987).

    Article  CAS  Google Scholar 

  14. Y. G. Chen and J. Ren, Catal. Lett., 29, 39 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Rezaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majidian, N., Habibi, N. & Rezaei, M. CH4 reforming with CO2 for syngas production over nickel catalysts supported on mesoporous nanostructured γ-Al2O3 . Korean J. Chem. Eng. 31, 1162–1167 (2014). https://doi.org/10.1007/s11814-014-0010-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0010-x

Keywords

Navigation