Skip to main content

Advertisement

Log in

Hydrodynamic behavior of inverse fluidized bed biofilm reactor for phenol biodegradation using Pseudomonas fluorescens

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The hydrodynamic characteristic performance of an internal draft tube inverse fluidized bed biofilm reactor was studied for the aerobic biodegradation of phenol (1,200 mg/l) using Pseudomonas fluorescens for various ratios of settled bed volume to reactor working volume (V b /V r ) under batchwise condition with respect to liquid phase. The operating parameters, such as superficial gas velocity, phase hold ups, aspect ratio and bed height, were analyzed for different ratios of (V b /V r ). The effect of biodegradation on synthetic phenolic effluent was determined from the reduction in chemical oxygen demand and phenol removal efficiency. The optimum value of (V b /V r ) m was 0.20 for the optimal superficial gas velocity, U gm =0.220 m/s with the COD reduction efficiency of 98.5% in 48 hours. The biomass and biofilm characteristics of P. fluorescens were determined for optimal hydrodynamic operating parameters by evaluating its biofilm dry density and thickness, bioparticle density, suspended and attached biomass concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Fan, Gas-liquid-solid fluidization engineering, Butterworths, Boston, USA (1989).

    Google Scholar 

  2. W. Sokol, Int. J. Chem. React. Eng., 8, 1 (2010).

    Google Scholar 

  3. W. Sokol and M. R. Hanafi, Biochem. Eng. J., 3, 185 (1999).

    Article  CAS  Google Scholar 

  4. L. Nikolov and D. Karamenew, Can. J. Chem. Eng., 65, 214 (1987).

    Article  CAS  Google Scholar 

  5. N. Ulaganathan and K. Krishnaiah, Bioproc. Biosyst. Eng., 15, 159 (1996).

    Article  CAS  Google Scholar 

  6. A. Garnier, C. Chavarie, G. Andre and D. Klvana, Chem. Eng. Commun., 98, 31 (1990).

    Article  CAS  Google Scholar 

  7. G. Olivieri, A. Marzocchella and P. Salatino, Can. J. Chem. Eng., 88, 574 (2010).

    CAS  Google Scholar 

  8. L. S. Fan, K. Muroyama and S. H. Chern, Chem. Eng. J., 24, 143 (1982).

    Article  CAS  Google Scholar 

  9. M. Comte, D. Bastoul, G. Hebrard, M. Roustan and V. Lazarova, Chem. Eng. Sci., 52, 3971 (1997).

    Article  CAS  Google Scholar 

  10. S.V. Krishna, S. R. Bandaru, D.V. S. Murthy and K. Krishnaiah, China Part., 5, 351 (2007).

    Article  CAS  Google Scholar 

  11. V. Sivasubramanian and M. Velan, J. Chem. Eng. Japan, 37, 1436 (2004).

    Article  CAS  Google Scholar 

  12. A. Ochieng, T. Ogada, W. Sisenda and P. Wambua, J. Hazard. Mater., 90, 311 (2002).

    Article  CAS  Google Scholar 

  13. H. M. Jena, B. K. Sahoo, G. K. Roy and B. C. Meikap, Chem. Eng. J., 145, 50 (2008).

    Article  CAS  Google Scholar 

  14. P. Buffiere and R. Moletta, Chem. Eng. Sci., 54, 1233 (1999).

    Article  CAS  Google Scholar 

  15. S. J. Han, R. B.H. Tan and K. C. Loh, Trans IChemE, 78, (2000).

    Google Scholar 

  16. T. Renganathan and K. Krishnaiah, Chem. Eng. Sci., 60, 2545 (2005).

    Article  CAS  Google Scholar 

  17. L. Gomez, A. Bodalo and E. Gomez, Chem. Eng. J., 127, 47 (2006).

    Article  CAS  Google Scholar 

  18. H. S. Choi and M.-S. Shin, Korean J. Chem. Eng., 16(5), 670 (1999).

    Article  CAS  Google Scholar 

  19. R. Sowmeyan and C. Swaminathan, Bioresour. Technol., 99, 3877 (2008).

    Article  CAS  Google Scholar 

  20. A. A. U. de Souza, H. L. Brandao, I. M. Zamporlini, H.M. Soares and S.M. de A.G.U. de Souza, Res. Conserv. Recycl., 52, 511 (2008).

    Article  Google Scholar 

  21. R. Souza, I.T. L. Bresolin, T. L. Bioni, M. L. Gimenes and B. P. Dias, Braz. J. Chem. Eng., 21, 219 (2004).

    Article  CAS  Google Scholar 

  22. S. E. Agarry and B. O. Solomon, Int. J. Environ. Sci. Technol., 5, 223 (2008).

    Article  CAS  Google Scholar 

  23. D. Kotresha and G.M. Vidyasagar, Biotechnol. Bioeng., 33, 987 (2007).

    Google Scholar 

  24. APHA-AWA-WPCF1992, Standards methods for the examination of water and waste water, Sixteenth Ed., American Public Health Association, American Water Works Association: Water Pollution Control Federation, Washington, DC, USA (1992).

    Google Scholar 

  25. R. D. Yang and A. E. Humphrey, Biotechnol. Bioeng., 17, 1211 (1975).

    Article  CAS  Google Scholar 

  26. S. E. Agarry and B. O. Solomon, Int. J. Environ. Sci. Technol., 5, 223 (2008).

    Article  CAS  Google Scholar 

  27. M. Rajasimman and C. Karthikeyan, Front. Chem. Eng. China, 3, 235 (2009).

    Article  CAS  Google Scholar 

  28. K. J. F. Rabah and F.M. Dahab, Water Res., 38, 4262 (2004).

    Article  CAS  Google Scholar 

  29. L. S. Fan, S. J. Hwang and A. Matsuura, Chem. Eng. Sci., 39, 1677 (1984).

    Article  CAS  Google Scholar 

  30. T. Renganathan and K. Krishnaiyah, Can. J. Chem. Eng., 81, 853 (2003).

    Article  CAS  Google Scholar 

  31. W. Sokol, A. Ambaw and B. Woldeyes, Chem. Eng. J., 150, 63 (2009).

    Article  CAS  Google Scholar 

  32. J.C. Lee and P. S. Buckley, Fluid mechanics and aeration characteristics of fluidized beds, In: P. F. Cooper, B. Atkinson (Ed.), Biological fluidized bed treatment of water and wastewater, Ellis Horwood, Chichester, UK (1981).

    Google Scholar 

  33. W. T. Tang and L. S. Fan, AIChE J., 33, 239 (1987).

    Article  CAS  Google Scholar 

  34. G. Olivieri, M. E. Russo, A. Marzocchella and P. Salatino, Biotechnol. Prog., 27, 1599 (2011).

    Article  CAS  Google Scholar 

  35. S. D. Kim and Y. Kang, Chem. Eng. Sci., 52, 3639 (1997).

    Article  CAS  Google Scholar 

  36. N. Arun, A. A. Razack and V. Sivasubramanian, Chem. Eng. Commun., 200, 1260 (2013).

    Article  CAS  Google Scholar 

  37. I. Coelhoso, R. Boatventura and A. Rodriguez, Biotechnol. Bioeng., 40, 625 (1992).

    Article  CAS  Google Scholar 

  38. Y. Liu and J.-H. Tay, Water Res., 36, 1653 (2002).

    Article  CAS  Google Scholar 

  39. H. Beyenal and A. Tanyolac, Biochem. Eng. J., 1, 53 (1998).

    Article  CAS  Google Scholar 

  40. W. K. Kwok, C. Picioreanu, S. L. Ong, M. C.M. van Loosdrecht, W. J. Ng and J. J. Heijnen, Biotechnol. Bioeng., 58, 400 (1998).

    Article  CAS  Google Scholar 

  41. K. Fujie, H.Y. Hu, Y. Ikeda and K. Urano, Chem. Eng. Sci., 47, 3745 (1992).

    Article  CAS  Google Scholar 

  42. R. C. Chen, J. Reese and L. S. Fan, AIChE J., 40, 1093 (1994).

    Article  CAS  Google Scholar 

  43. Y. X. Guo, M. N. Rathor and H.C. Ti, Chem. Eng. J., 67, 205 (1997).

    Article  CAS  Google Scholar 

  44. G. A. Hill and C.W. Robinson, Biotechnol. Bioeng., 17, 1599 (1975).

    Article  CAS  Google Scholar 

  45. M. Schroeder, C. Muller, C. Posten, W. D. Deckwer, and V. Hecht, Biotechnol. Bioeng., 54, 567 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sabarunisha Begum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabarunisha Begum, S., Radha, K.V. Hydrodynamic behavior of inverse fluidized bed biofilm reactor for phenol biodegradation using Pseudomonas fluorescens . Korean J. Chem. Eng. 31, 436–445 (2014). https://doi.org/10.1007/s11814-013-0260-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0260-z

Keywords

Navigation