Skip to main content
Log in

Detection of reactive oxygen species generated by microwave electrodeless discharge lamp and application in photodegradation of H2S

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The photodegradation of hydrogen sulfide (H2S) was examined using a self-made microwave electrodeless discharge lamp (MEDL). The features of the MEDL had been tested. The results showed that the MEDL absorbed 18.3, 32.7 and 41.8W power at the microwave (MW) output power of 165, 330 and 660W, respectively. The intensity of the emitted light increased with increasing MW output power. The reactive oxygen species (ROS) generated by irradiated air and nitrogen were detected, respectively. It was illustrated that the irradiated air could generate a number of ROS, at least including 1O2 and ·OH. And the amount of ROS increased with increasing MW output power. In photodegradation of H2S process, the effects of MW output power and gas composition were investigated. The removal efficiency of H2S under nitrogen was obviously lower compared with that under air. The removal efficiency of H2S increased with increasing MW output power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Portela, B. Sanchez, J. M. Coronado, R. Candal and S. Suarez, Catal. Today, 129, 223 (2007).

    Article  CAS  Google Scholar 

  2. G.-T. Jeong, G.-Y. Lee, J.-M. Cha and D.-H. Park, Korean J. Chem. Eng., 25, 118 (2008).

    Article  CAS  Google Scholar 

  3. D.-R. Cho, S.-Y. Kim, D.-W. Park and P.H. Mutin, Korean J. Chem. Eng., 26, 377 (2009).

    Article  CAS  Google Scholar 

  4. S. Kato, Y. Hirano, M. Iwata, T. Sano, K. Takeuchi and S. Matsuzawa, Appl. Catal. B: Environ., 57, 109 (2005).

    Article  CAS  Google Scholar 

  5. M. P. Chenar, H. Savoji, M. Soltanieh, T. Matsuura and S. Tabe, Korean J. Chem. Eng., 28, 902 (2011).

    Article  CAS  Google Scholar 

  6. S.-H. Kim, I. H. Kim, W. J. Lee and J.-H. Lee, Korean J. Chem. Eng., 25, 1131 (2008).

    Article  CAS  Google Scholar 

  7. M.C. Canela, R. M. Alberici and W. F. Jardim, J. Photochem. Photobiol. A: Chem., 112, 73 (1998).

    Article  CAS  Google Scholar 

  8. J. S. Jang, W. Li, S.H. Oh and J. S. Lee, Chem. Phys. Lett., 425, 278 (2006).

    Article  CAS  Google Scholar 

  9. J. S. Jang, H. Gyu Kim, P. H. Borse and J. S. Lee, Int. J. Hydrog. Energy, 32, 4786 (2007).

    Article  CAS  Google Scholar 

  10. S. Kataoka, E. Lee, M. I. Tejedor-Tejedor and M.A. Anderson, Appl. Catal. B: Environ., 61, 159 (2005).

    Article  CAS  Google Scholar 

  11. X. Zhang, Y. Wang and G. Li, J. Mol. Catal. A: Chem., 237, 199 (2005).

    Article  CAS  Google Scholar 

  12. J. Hong, C. Sun, S.-G. Yang and Y.-Z. Liu, J. Hazard. Mater., 133, 162 (2006).

    Article  CAS  Google Scholar 

  13. Z. Gao, S. Yang, N. Ta and C. Sun, J. Hazard. Mater., 145, 424 (2007).

    Article  CAS  Google Scholar 

  14. J. Hong, N. Ta, S.-g. Yang, Y.-z. Liu and C. Sun, Desalination, 214, 62 (2007).

    Article  CAS  Google Scholar 

  15. V. Církva, H. Žabová and M. Hájek, J. Photochem. Photobiol. A: Chem., 198, 13 (2008).

    Article  Google Scholar 

  16. J. r. Literák and P. Klán, J. Photochem. Photobiol. A: Chem., 137, 29 (2000)

    Article  Google Scholar 

  17. P. Klán, M. Hájek and V.r. Církva, J. Photochem. Photobiol. A: Chem., 140, 185 (2001).

    Article  Google Scholar 

  18. L.-Y. Xia, D.-H. Gu, J. Tan, W.-B. Dong and H.-Q. Hou, Chemosphere, 71, 1774 (2008).

    Article  CAS  Google Scholar 

  19. J. Wang, Y. Guo, J. Gao, X. Jin, Z. Wang, B. Wang, K. Li and Y. Li, Ultrason. Sonochem., 18, 1028 (2011).

    Article  CAS  Google Scholar 

  20. Z. Zhang, Y. Xu, X. Ma, F. Li, D. Liu, Z. Chen, F. Zhang and D. D. Dionysiou, J. Hazard. Mater., 209–210, 271 (2012).

    Article  Google Scholar 

  21. X. Zhang, G. Li and Y. Wang, Dyes Pigm., 74, 536 (2007).

    Article  CAS  Google Scholar 

  22. X. Zhang, Y. Wang, G. Li and J. Qu, J. Hazard. Mater., 134, 183 (2006).

    Article  CAS  Google Scholar 

  23. D.-H. Han, S.-Y. Cha and H.-Y. Yang, Water Res., 38, 2782 (2004).

    Article  CAS  Google Scholar 

  24. S.-i. Umemura, N. Yumita, K. Umemura and R. Nishigaki, Cancer Chemoth. Pharm., 43, 389 (1999).

    Article  CAS  Google Scholar 

  25. R. Dai, R. Shoemaker, D. Farrens, M. J. Han, C. S. Kim and P.-S. Song, J. Nat. Prod., 55, 1241 (1992).

    Article  CAS  Google Scholar 

  26. S. Sachdev and K. J. A. Davies, Free Radical Biol. Med., 44, 215 (2008).

    Article  CAS  Google Scholar 

  27. C. A. Linkous, C. Huang and J.R. Fowler, J. Photochem. Photobiol. A: Chem., 168, 153 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Zhang, T., Zheng, L. et al. Detection of reactive oxygen species generated by microwave electrodeless discharge lamp and application in photodegradation of H2S. Korean J. Chem. Eng. 30, 1423–1428 (2013). https://doi.org/10.1007/s11814-013-0074-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0074-z

Key words

Navigation