Skip to main content
Log in

Effect of operating parameters on methanation reaction for the production of synthetic natural gas

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Concerns about the depletion and increasing price of natural gas are generating interest in the technology of synthetic natural gas (SNG) production. SNG can be produced by the methanation reaction of synthesis gas obtained from coal gasification; this methanation reaction is the crucial procedure for economical production of SNG. We investigated the effect of operating parameters such as the reaction temperature, pressure, and feed compositions (H2/CO and CO2/CO ratios) on the performance of the methanation reaction by equilibrium model calculations and dynamic numerical model simulations. The performance of the methanation reaction was estimated from the CO conversion, CO to CH4 conversion, and CH4 mole fraction in the product gas. In general, a lower temperature and/or higher pressure are favorable for the enhancement of the methanation reaction performance. However, the performance becomes poor at low temperatures below 300 °C and high pressures above 15 atm because of limitations in the reaction kinetics. The smaller the amount of CO2 in the feed, the better the performance, and an additional H2 supply is essential to increase the methanation reaction performance fully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Mondal, G. S. Dang and M. O. Garg, Fuel Process Technol, 92, 1395 (2011).

    Article  CAS  Google Scholar 

  2. J. H. Choi, Y. C. Bak, H. J. Jang, J. F. Kim and J. H. Kim, Korean J. Chem. Eng, 21, 726 (2004).

    Article  CAS  Google Scholar 

  3. S.Y. Chen, W.G. Xiang, D. Wang and Z. P. Xue, Appl. Energy, 95, 285 (2012).

    Article  CAS  Google Scholar 

  4. M. Hook and K. Aleklett, Int. J. Energy Res, 34, 848 (2010).

    Article  CAS  Google Scholar 

  5. B. Chen, X.Y. Wei, Z.M. Zong, Z. S. Yang, Y. Qing and C. Liu, Appl. Energy, 88, 4570 (2011).

    Article  CAS  Google Scholar 

  6. S. Shafiee and E. Topal, Appl. Energy, 87, 988 (2010).

    Article  Google Scholar 

  7. IEA, World energy outlook 2011 special report, International Energy Agency, Paris (2011).

    Book  Google Scholar 

  8. J. Kopyscinski, T. J. Schildhauer and S.M. A. Biollaz, Fuel, 89, 1763 (2010).

    Article  CAS  Google Scholar 

  9. S. Ariyapadi, P. Shires, M. Bhargava and D. Ebbern, Twenty-fifth annual international pittsburgh coal conference, Pittsburgh, USA (2008).

    Google Scholar 

  10. D. A. Bell, B. F. Towler and M. Fan, Coal gasification and its applications, Elsevier, Oxford (2011).

    Google Scholar 

  11. K. H. Eisenlohr, F.W. Moeller and M. E. Dry, A.C.S. Fuel, 19, 1 (1974).

    CAS  Google Scholar 

  12. J. E. Landers, Sixth synthetic pipeline gas symposium, Chicago, USA (1974).

    Google Scholar 

  13. R. L. Ensell and H. J. F. Stroud, International gas research conference, London, UK (1983).

    Google Scholar 

  14. R. Harth, W. Jansing and H. Teubner, Nuclear Eng. Design, 121, 173 (1990).

    Article  CAS  Google Scholar 

  15. G. A. White, T. R. Roszkows and D.W. Stanbrid, A.C.S. Fuel, 19, 57 (1974).

    Google Scholar 

  16. J. R. Rostrup-Nielsen, K. Pedersen and J. Sehested, Appl. Catal. AGen, 330, 134 (2007).

    Article  CAS  Google Scholar 

  17. G. Energy, Hydromethanation, GreatPoint Energy, Cambridge, USA (2009).

    Google Scholar 

  18. E. Everitt, D.C. Cicero and G. J. Stiegel, Co-production of substitute natural gas/electricity via catalytic coal gasification, National Energy Technology Laboratory, USA (2009).

    Google Scholar 

  19. G. J. Stiegel, Overview of DOEs gasification program, National Energy Technology Laboratory, USA (2009).

    Google Scholar 

  20. D. C. Cicero, G. J. Stiegel and E. Everitt, Development of a hydrogasification process for co-production of substitute natural gas (SNG) and electric power from western coals, National Energy Technology Laboratory, USA (2009).

    Google Scholar 

  21. I. Aigner, C. Pfeifer and H. Hofbauer, Fuel, 90, 2404 (2011).

    Article  CAS  Google Scholar 

  22. A. Duret, C. Friedli and F. Marechal, J. Clean. Prod, 13, 1434 (2005).

    Article  Google Scholar 

  23. M.C. Seemann, T. J. Schildhauer and S.M. A. Biollaz, Ind. Eng. Chem. Res, 49, 7034 (2010).

    Article  CAS  Google Scholar 

  24. T. Grobl, H. Walter and M. Haider, Appl. Energy, 97, 451 (2012).

    Article  CAS  Google Scholar 

  25. J. P. Strakey, A. J. Forney and W. P. Haynes, Methanation in coal gasification processes, Pittsburgh Energy Research Center, Pittsburgh (1975).

    Google Scholar 

  26. M.V. Twigg, Catalyst handbook, 2nd Ed., Wolfe Publishing Co., London (1989).

    Google Scholar 

  27. J. G. Xu and G. F. Froment, AIChE J, 35, 88 (1989).

    Article  CAS  Google Scholar 

  28. F. Gallucci, L. Paturzo and A. Basile, Int. J. Hydrog. Energy, 29, 611 (2004).

    Article  CAS  Google Scholar 

  29. Z.B. Rui, K. Zhang, Y. D. Li and Y. S. Lin, Int. J. Hydrog. Energy, 33, 2246 (2008).

    Article  CAS  Google Scholar 

  30. M. Zanfir, A. Gavriilidis, Chem. Eng. Sci., 58, 3947 (2003).

    Article  CAS  Google Scholar 

  31. S. S. E. H. Eisenlohr and S. S. Elshishini, Modeling, simulation and optimization of industrial fixed bed catalytic reactor, 7th Ed., Gordon and Breach Science Publishers, New York (1993).

    Google Scholar 

  32. O. Levenspiel, Chemical reaction engineering, 3rd Ed., Wiley, New York (1999).

    Google Scholar 

  33. H. M. Jang, K.B. Lee, H. S. Caram and S. Sircar, Chem. Eng. Sci, 73, 431 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Bong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, W.R., Lee, K.B. Effect of operating parameters on methanation reaction for the production of synthetic natural gas. Korean J. Chem. Eng. 30, 1386–1394 (2013). https://doi.org/10.1007/s11814-013-0047-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0047-2

Key words

Navigation