Skip to main content
Log in

Biodiesel production from waste cooking palm oil using calcium oxide supported on activated carbon as catalyst in a fixed bed reactor

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A reactor has been developed to produce high quality fatty acid methyl esters (FAME) from waste cooking palm oil (WCO). Continuous transesterification of free fatty acids (FFA) from acidified oil with methanol was carried out using a calcium oxide supported on activated carbon (CaO/AC) as a heterogeneous solid-base catalyst. CaO/AC was prepared according to the conventional incipient-wetness impregnation of aqueous solutions of calcium nitrate (Ca(NO3)2·4H2O) precursors on an activated carbon support from palm shell in a fixed bed reactor with an external diameter of 60 mm and a height of 345 mm. Methanol/oil molar ratio, feed flow rate, catalyst bed height and reaction temperature were evaluated to obtain optimum reaction conditions. The results showed that the FFA conversion increased with increases in alcohol/oil molar ratio, catalyst bed height and temperature, whereas decreased with flow rate and initial water content in feedstock increase. The yield of FAME achieved 94% at the reaction temperature 60 °C, methanol/oil molar ratio of 25: 1 and residence time of 8 h. The physical and chemical properties of the produced methyl ester were determined and compared with the standard specifications. The characteristics of the product under the optimum condition were within the ASTM standard. High quality waste cooking palm oil methyl ester was produced by combination of heterogeneous alkali transesterification and separation processes in a fixed bed reactor. In sum, activated carbon shows potential for transesterification of FFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Altin, S. Cetinkaya and H. S. Yucesu, Energy Convers. Manage., 42, 529 (2001).

    Article  CAS  Google Scholar 

  2. A. Gopinath, S. Puhan and G. Nagarajan, J. Automobile Eng., 223, 565 (2009).

    Article  Google Scholar 

  3. L. S. Hsieh, U. Kumar and J. Wu, Chem. Eng. J., 158, 250 (2010).

    Article  CAS  Google Scholar 

  4. M. G. Kulkarni and A. K. Dalai, Ind. Eng. Chem. Res., 45, 2901 (2006).

    Article  CAS  Google Scholar 

  5. M. Canakci, Bioresour. Technol., 98, 183 (2007).

    Article  CAS  Google Scholar 

  6. N. A. Zafiropoulos, H. L. Ngo, T. A. Foglia, E. T. Samulski and W. Lin, Chem. Commun., 35, 3670 (2007).

    Article  Google Scholar 

  7. V. B. Veljkovic, S. H. Lakicevic, O. S. Stamenkovic, Z. B. Todorovic and M. L. Lazic, Fuel, 85, 2671 (2006).

    Article  CAS  Google Scholar 

  8. H. J. Berchmans and S. Hirata, Bioresour. Technol., 99, 1716 (2008).

    Article  CAS  Google Scholar 

  9. M. Canakci and J. Van, Gerpen, T. ASAE, 46, 945 (2003).

    CAS  Google Scholar 

  10. Y. Liu and L. Wang, Chem. Eng. Process., 48, 1152 (2009).

    Article  CAS  Google Scholar 

  11. P.R. Costa Neto, L. Rossi, G. Zagonel and L. Ramos, Quim. Nova., 23, 531 (2000).

    Article  Google Scholar 

  12. F. Zaher, Energy Sources, 25, 819 (2003).

    CAS  Google Scholar 

  13. S. Baroutian, M.K. Aroua, A. A. A. Raman and N.M.N. Sulaiman, Fuel Process. Technol., 91, 1378 (2010).

    Article  CAS  Google Scholar 

  14. M. Zabeti, W.M. A. WanDaud and M. K. Aroua, Appl. Catal., A, 366, 154 (2009).

    Article  CAS  Google Scholar 

  15. W. Xie and X. Huang, Catal. Lett., 107, 53 (2006).

    Article  CAS  Google Scholar 

  16. A. Buasri, N. Chaiyut and C. Nakweang, Chiang Mai J. Sci., 38, 572 (2011).

    CAS  Google Scholar 

  17. R. Sridharan and I. M. Mathai, J. Sci. Ind. Res. India., 33, 178 (1974).

    CAS  Google Scholar 

  18. Y. Feng, A. Zhang, J. Li and B. He, Bioresour. Technol., 102, 3607 (2011).

    Article  CAS  Google Scholar 

  19. W. Yong, O. Shiyi, L. Pengzhan, X. Feng and T. Shuze, J. Mol. Catal. A: Chem., 252, 107 (2006).

    Article  Google Scholar 

  20. B. R. Dhar and K. Kirtania, Chem. Eng. Res. Bull., 13, 55 (2009).

    CAS  Google Scholar 

  21. P. Lu, Z. Yuan, L. Li, Z. Wang and W. Luo, Renew. Energy, 35, 283 (2010).

    Article  CAS  Google Scholar 

  22. L. S. Hsieh, U. Kumar and J. C. S. Wu, Chem. Eng. J., 158, 250 (2010).

    Article  CAS  Google Scholar 

  23. T. Wan, P. Yu, S. Gong, Q. Li and Y. Luo, Korean J. Chem. Eng., 25, 998 (2008).

    Article  CAS  Google Scholar 

  24. S. Benjapornkulaphong, C. Ngamcharussrivichai and K. Bunyakiat, Chem. Eng. J., 145, 468 (2009).

    Article  CAS  Google Scholar 

  25. Z.M. Wang, J. S. Lee, J.Y. Park, C. Z. Wu and Z.H. Yuan, Korean J. Chem. Eng., 25, 670 (2008).

    Article  Google Scholar 

  26. B.M. E. Russbueldt and W. F. Hoelderich, Appl. Catal., A, 362, 47 (2009).

    Article  CAS  Google Scholar 

  27. S. Baroutian, M.K. Aroua, A. A. A. Raman and N.M.N. Sulaiman, Bioresour. Technol., 102, 1095 (2011).

    Article  CAS  Google Scholar 

  28. M. Fan and P. Zhang, Energy Fuels, 21, 633 (2007).

    Article  CAS  Google Scholar 

  29. M. Zabeti, W. M. A. WanDaud and M. K. Aroua, Fuel Process. Technol., 91, 243 (2010).

    Article  CAS  Google Scholar 

  30. N. Boz, N. Degirmenbasi and D. M. Kalyon, Appl. Catal., B, 89, 590 (2009).

    Article  CAS  Google Scholar 

  31. A. P. Vyas, N. Subrahmanyam and P. A. Patel, Fuel, 88, 625 (2009).

    Article  CAS  Google Scholar 

  32. H. Sun, Y. Ding, J. Duan, Q. Zhang, Z. Wang, H. Lou and X. Zheng, Bioresour. Technol., 101, 953 (2010).

    Article  CAS  Google Scholar 

  33. A. Buasri, N. Chaiyut, P. Ketlekha, W. Mongkolwatee and S. Boonrawd, CMU J. Nat. Sci., 8, 115 (2009).

    Google Scholar 

  34. J.Y. Park, J. S. Lee, Z. M. Wang and D. K. Kim, Korean J. Chem. Eng., 27, 1791 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achanai Buasri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buasri, A., Ksapabutr, B., Panapoy, M. et al. Biodiesel production from waste cooking palm oil using calcium oxide supported on activated carbon as catalyst in a fixed bed reactor. Korean J. Chem. Eng. 29, 1708–1712 (2012). https://doi.org/10.1007/s11814-012-0047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0047-7

Key words

Navigation