Skip to main content

Advertisement

Log in

Experimental and numerical investigation on the pyrolysis of single coarse lignite particles

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This paper reports on the mathematical modeling of the pyrolysis of single coarse lignite particles using a kinetics model coupled with a heat transfer model. The parallel reaction kinetics model of the lignite pyrolysis makes no assumptions about the activation energy distribution and the conversion of sub-reactions. The pyrolysis kinetics parameters were obtained on the basis of experimental data from thermogravimetric analysis (TGA) tests. The heat transfer model includes diffusive, convective and radiative heat transfer modes. The experimental investigations were carried out for single lignite particles in an electrically heated reactor. Measurements of the temperature and mass loss were performed during the pyrolysis in a nitrogen atmosphere. The model predictions for the temperature and mass loss histories agree well with the experimental data, verifying that the mathematical model accurately evaluates the pyrolysis of lignite particles. The effects of temperature and particle size on the pyrolysis time and final residual mass fraction were evaluated using the numerical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Thomas, S. J. Sandro and G. Peter, Int. J. Coal Geol., 72, 1 (2007).

    Article  Google Scholar 

  2. S. Z. Sun, J.W. Zhang, X. D. Hu, P. H. Qiou, J. Qian and Y. K. Qin, Korean J. Chem. Eng., 26, 554 (2009).

    Article  CAS  Google Scholar 

  3. J.M. Lee, D.W. Kim and J. S. Kim, Korean J. Chem. Eng., 26, 506 (2009).

    Article  CAS  Google Scholar 

  4. Y. J. Huang, B. S. Jin, Z. P. Zhong, R. Xiao and H.C. Zhong, Korean J. Chem. Eng., 24, 698 (2007).

    Article  CAS  Google Scholar 

  5. J.W. Zhang, S. Z. Sun, X. D. Hu, R. Sun and Y. K. Qin, Energy Fuels, 23, 2376 (2009).

    Article  CAS  Google Scholar 

  6. F. Fang, Z. S. Li and N. S. Cai, Korean J. Chem. Eng., 26, 1414 (2009).

    Article  CAS  Google Scholar 

  7. C. Prompubess, L. Mekasut, P. Piumsomboon and P. Kuchontara, Korean J. Chem. Eng., 24, 989 (2007).

    Article  CAS  Google Scholar 

  8. S. Badzioch and P.G. Hawksley, Ind. Eng. Chem. Proc. Des. Dev., 9, 521 (1970).

    Article  CAS  Google Scholar 

  9. H. Kobayashi, J. B. Howard and A. F. Sarofim, Sixteenth symposium (international) on combustion, Cambridge, U.K. (1976).

  10. D. B. Anthony and J. B. Howard, AIChE J., 22, 625 (1976).

    Article  CAS  Google Scholar 

  11. S. C. Saxena, Prog. Energy Combust. Sci., 16, 55 (1990).

    Article  CAS  Google Scholar 

  12. R. P. Solomon, M. A. Serio and E. M. Suuberg, Prog. Energy Combust. Sci., 18, 133 (1992).

    Article  CAS  Google Scholar 

  13. R. H. Essenhigh, Chemistry of coal utilization, John Wiley & Sons Inc., New York (1981).

    Google Scholar 

  14. D. B. Anthony, J. B. Howard, H.C. Hottel and H. P. Meissuer, Fuel, 55, 121 (1976).

    Article  CAS  Google Scholar 

  15. A. K. Sadhukhan, P. Gupta and R. K. Saha, J. Anal. Appl. Pyrol., 81, 183 (2008).

    Article  CAS  Google Scholar 

  16. A.K. Sadhukhan, P. Gupta and R. K. Saha, Bioresour. Technol., 100, 3134 (2009).

    Article  CAS  Google Scholar 

  17. J. Larfeldt, B. Leckner and M.C. Melaaen, Fuel, 79, 1637 (2000).

    Article  CAS  Google Scholar 

  18. C. A. Heidenreich, H.M. Yan and D. K. Zhang, Fuel, 78, 557 (1999).

    Article  CAS  Google Scholar 

  19. J. S. Chern and A. N. Hayhurst, Combust. Flame, 157, 925 (2010).

    Article  CAS  Google Scholar 

  20. W.C. Park, A. Atreya and H.R. Baumb, Combust. Flame, 157, 481 (2010).

    Article  CAS  Google Scholar 

  21. P. K. Agarwal, W. E. Genetti and Y.Y. Lee, Fuel, 63, 1157 (1984).

    Article  CAS  Google Scholar 

  22. J. F. Stubington and K. Sumaryono, Fuel, 63, 1013 (1984).

    Article  CAS  Google Scholar 

  23. J. Tomeczek and J. Kowol, Can. J. Chem. Eng., 69, 286 (1990).

    Article  Google Scholar 

  24. E. Koch, H. Juntgen and W. Peters, Brennstoff Chemie, 50, 366 (1969).

    Google Scholar 

  25. D. B. Anthony, J. B. Howard, H. C. Hottel and H. P. Meissner, Fifteenth symposium (international) on combustion, Tokyo, Japan (1974).

  26. B. A. Adesanya and H. N. Pham, Fuel, 74, 896 (1995).

    Article  CAS  Google Scholar 

  27. Y. Zhao, M. A. Serio and P. R. Solomon, Twenty-Sixth symposium (international) on combustion, Naples, Italy (1996).

  28. D. Merrick, Fuel, 62, 540 (1983).

    Article  CAS  Google Scholar 

  29. V. Strezov, J. A. Lucas, T. J. Evans and L. Strezov, J. Therm. Anal. Calorim., 78, 385 (2004).

    Article  CAS  Google Scholar 

  30. F. Hanrot, D. Ablitzer, J. L. Houzelot and M. Dirand, Fuel, 73, 305 (1994).

    Article  CAS  Google Scholar 

  31. A. Volborth, Coal science and chemistry, Elsevier, Amsterdam (1987).

    Google Scholar 

  32. K. Miura and T. Maki, Energy Fuels, 12, 864 (1998).

    Article  CAS  Google Scholar 

  33. K. Miura, Energy Fuels, 9, 302 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changfu You.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, K., You, C. & Li, Y. Experimental and numerical investigation on the pyrolysis of single coarse lignite particles. Korean J. Chem. Eng. 29, 540–548 (2012). https://doi.org/10.1007/s11814-011-0200-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0200-8

Key words

Navigation