Skip to main content
Log in

Characteristics of sludge hydrolysis by ultrasound and thermal pretreatment at low temperature

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Ultrasonic treatment and thermal treatment at low temperature were employed together to analyze and compare the effect of temperature on ultrasonic sludge hydrolysis. Waste activated sludge was more susceptible to ultrasound than anaerobic sludge and primary sludge. In ultrasonic treatment of waste activated sludge for 1 hour, ΔSCOD/(−ΔVSS) ratio decreased from 2.40 to 0.44, indicating that high COD components were solubilized faster than the low COD components. Ultrasonic treatment increased the temperature significantly and the heat effect on sludge hydrolysis was not negligible. Primary sludge was more susceptible to heat than waste activated sludge. A sequential treatment of heat and ultrasound of primary sludge showed that hydrolysis efficiency was more affected by the ultrasonic power than the temperature and the time duration. In case of waste activated sludge, the overall hydrolysis efficiency increased with the temperature up to 50°C, and it remained almost constant at higher temperature. From the results the contribution of shear force by cavitation bubbles decreased at higher temperature. The effects of shear and heat in ultrasonic sludge treatment need to be analyzed separately for the optimum sludge pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Gossett and R. L. Belser, J. Env. Eng., 108, 1101 (1982).

    CAS  Google Scholar 

  2. V. N. Gunaseelan, Biomass Bioeneng., 13, 83 (1997).

    Article  CAS  Google Scholar 

  3. M. P. J. Weemaes and W. H. Verstraete, J. Chem. Technol. Biotechnol., 73, 83 (1998).

    Article  CAS  Google Scholar 

  4. C. Bourgrier, H. Carrere and J. P. Delgenes, Chem. Eng. Proc., 45, 711 (2006).

    Article  Google Scholar 

  5. C. Eskicioglu, K. J. Kennedy and R. L. Droste, Water Res., 40, 3725 (2006).

    Article  CAS  Google Scholar 

  6. C. Eskicioglu, N. Terzian, K. J. Kennedy and R. L. Droste, Water Res., 41, 2457 (2007).

    Article  CAS  Google Scholar 

  7. A. Valo, H. Carrere and J. P. Delgenes, J. Chem. Technol. Biotechnol., 79, 1197 (2004).

    Article  CAS  Google Scholar 

  8. J. Kopp, J. Müller, N. Dicht and J. Schwedes, Water Sci. Technol., 36(11), 129 (1997).

    Article  CAS  Google Scholar 

  9. C. Bougrier, C. Albasi, J. P. Delgenès and H. Carrère, Chem. Eng. Proc., 45, 711 (2006).

    Article  CAS  Google Scholar 

  10. U. Baier and P. Schmidheiny, Water Sci. Technol., 36(11), 137 (1997).

    Article  CAS  Google Scholar 

  11. G.A. Vlyssides and P. K. Karlis, Biores. Technol., 91, 201 (2004).

    Article  CAS  Google Scholar 

  12. S.B. Kim, I. H. Park, M. J. Choi, S. B. Lee and K.W. Lee, Korean J. Chem. Eng., 13, 435 (1996).

    Article  CAS  Google Scholar 

  13. I. Ferrer, S. Ponsa, F. Vazquez and X. Font, Biochem. Eng. J., 42, 186 (2008).

    Article  CAS  Google Scholar 

  14. A. Tiehm, K. Nickel and U. Neis, Water Sci. Technol., 36(11), 121 (1997).

    Article  CAS  Google Scholar 

  15. Y. C. Chiu, C. N. Chang, J.G. Lin and S. J. Huang, Water Sci. Technol., 36(11), 155 (1997).

    Article  CAS  Google Scholar 

  16. C. P. Chu, B. Chang, G. S. Liao, D. S. Jean and D. J. Lee, Water Res., 35, 1038 (2001).

    Article  CAS  Google Scholar 

  17. C. P. Chu, D. J. Lee, B. Chang, C. S. You and J. H. Tay, Water Res., 36, 2681 (2002).

    Article  CAS  Google Scholar 

  18. A. Grönroos, H. Kyllönen, K. Korpijärvi, P. Pirkonen, T. Paavola, J. Jokela and J. Rintala, Ultrason. Sonochem., 12, 115 (2005).

    Article  Google Scholar 

  19. F. Wang, S. Lu and M. Ji, Ultrason. Sonochem., 13, 334 (2006).

    Article  Google Scholar 

  20. S. M. Khanal, D. Grewell, S. Sung and J. van Leeuwen, Crit. Rev. Environ. Sci. Technol., 37, 277 (2007).

    Article  CAS  Google Scholar 

  21. R.G. Earnshaw, J. Appleyard and R.M. Hurst, Int. J. Food Microbiol., 28, 197 (1995).

    Article  CAS  Google Scholar 

  22. G. E. Vacquez and S. J. Putterman, Phys. Rev. Lett., 85, 3037 (2000).

    Article  Google Scholar 

  23. K. J. Taylor and P. D. Jarman, J. Phys. D: Appl. Phys., 1, 653 (1968).

    Article  Google Scholar 

  24. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, 21st Ed., Washington DC (2005).

  25. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, J. Biol. Chem., 193, 265 (1951).

    CAS  Google Scholar 

  26. G. Bitton, Wastewater microbiology 3rd Ed., John Wiley & Sons, Hoboken, N.J. (2005).

    Book  Google Scholar 

  27. Y. T. Didenko, D.N. Nastich, S. P. Pugach, Y. A. Polovinka and V. I. Kvochka, Ultrason., 32, 71 (1994).

    Article  CAS  Google Scholar 

  28. B. P. Barber, C. C. Wu, R. Lofsted, P. H. Roberts and S. J. Putterman, Phys. Rev. Lett., 72, 1380 (1994).

    Article  CAS  Google Scholar 

  29. D.M. Kirpalani and K. J. McQuinn, Ultrason. Sonochem., 13, 1 (2006).

    Article  CAS  Google Scholar 

  30. M. H. Entezari and P. Kruus, Ultrason. Sonochem., 3, 19 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DJ., Youn, Y. Characteristics of sludge hydrolysis by ultrasound and thermal pretreatment at low temperature. Korean J. Chem. Eng. 28, 1876–1881 (2011). https://doi.org/10.1007/s11814-011-0055-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0055-z

Key words

Navigation