Skip to main content
Log in

Experiment and 3D simulation of slugging regime in a circulating fluidized bed

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A circulating fluidized bed (CFB) is widely applied in many industries because it has high efficiency. To develop and improve the process, an understanding of the hydrodynamics inside the CFB is very important. Computational fluid dynamics (CFD) represents a powerful tool for helping to understand the phenomena involved in the process. In this study, a CFD model was developed to represent a cold model of the laboratory scale CFB which was designed to study the hydrodynamics of a CFB using commercial CFD software. The Eulerian approach with kinetic theory of granular flow was used for simulating the hydrodynamics inside the system. After proper tuning of relevant parameters, the pressure profile along the equipment from the simulation was well agreed with that from the experiment. The simulation result expresses the hydrodynamic parameters of the slug flow such as solid volume fraction, gas and solid velocities and granular temperature in the riser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kunii and O. Levenspiel, Fluidization engineering, Butterworth-Heinemann, New York (1991).

    Google Scholar 

  2. J. R. Grace, A. A. Avidan and T. M. Knowlton, Circulating fluidized beds, Blackie Academic & Professional, London (1997).

    Google Scholar 

  3. D. Geldart, Powder Technol., 7, 285 (1973).

    Article  CAS  Google Scholar 

  4. P. Lettieri, G. Saccone and L. Cammarata, Chem. Eng. Res. Des., 82, 939 (2004).

    Article  CAS  Google Scholar 

  5. J. Baeyens and D. Geldart, Chem. Eng. Sci., 29, 255 (1974).

    Article  CAS  Google Scholar 

  6. C. G. J. Baker and D. Geldart, Powder Technol., 19, 177 (1978).

    Article  Google Scholar 

  7. L. De Luca, R. Di Felice, P. U. Foscolo and P. P. Boattini, Powder Technol., 69, 171 (1992).

    Article  Google Scholar 

  8. D. Gidaspow, Multiphase flow and fluidization: Continuum and kinetic theory description, Academic Press, Boston (1994).

    Google Scholar 

  9. Fluent Inc., Fluent 6.2.16 User’s Guide, Fluent Inc., Lebanon (2003).

    Google Scholar 

  10. L. C. Gomez and F. E. Milioli, Powder Technol., 132, 216 (2003).

    Article  Google Scholar 

  11. M. L. Mastellone and U. Arena, Chem. Eng. Sci., 54, 5383 (1999).

    Article  CAS  Google Scholar 

  12. P. D. Noymer, M. R. Hyre and L. R. Glicksman, Int. J. Heat Mass Transfer, 43, 3641 (2000).

    Article  CAS  Google Scholar 

  13. X. Wang, B. Jin and W. Zhong, Chem. Eng. Process., 48, 695 (2009).

    CAS  Google Scholar 

  14. J. D. Wilde, G. B. Marin and G. J. Heynderickx, Chem. Eng. Sci., 58, 877 (2003).

    Article  Google Scholar 

  15. P. C. Johnson and R. Jackson, J. Fluid Mech., 176, 67 (1987).

    Article  CAS  Google Scholar 

  16. E. Cruz, F. R. Steward and T. Pugsley, Powder Technol., 169, 115 (2006).

    Article  CAS  Google Scholar 

  17. B. Chalermsinsuwan, P. Kuchonthara and P. Piumsomboon, Chem. Eng. Process., 48, 165 (2009).

    CAS  Google Scholar 

  18. B. Chalermsinsuwan, P. Piumsomboon and D. Gidaspow, Chem. Eng. Sci., 64, 1195 (2009).

    Article  CAS  Google Scholar 

  19. R. Clift and J. R. Grace, in Fluidization II, J. F. Davidson, R. Clift and D. Harrison Eds., Academic Press, London (1985).

    Google Scholar 

  20. S. H. Lee, D. H. Lee and S. D. Kim, Korean J. Chem. Eng., 19(2), 351 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornpote Piumsomboon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amornsirirat, C., Chalermsinsuwan, B., Mekasut, L. et al. Experiment and 3D simulation of slugging regime in a circulating fluidized bed. Korean J. Chem. Eng. 28, 686–696 (2011). https://doi.org/10.1007/s11814-010-0407-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0407-0

Key words

Navigation