Skip to main content

Advertisement

Log in

Changes in physicochemical properties and gaseous emissions of composting swine manure amended with alum and zeolite

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Ammonia emissions from composted swine manure and the resulting physicochemical changes were monitored to determine the effectiveness of adding alum and zeolite during the composting process, as well as the most effective addition method. The two amendments reduced ammonia emissions 85–92%, with the finished compost retaining three-fold more NH +4 -N than the unamended control. The addition of zeolite sequestered 44% of the retained NH +4 -N at zeolite exchange sites. The addition of amendments did not appear to significantly affect microbial activity, because the patterns of CO2 emissions, total organic carbon (TOC) reduction, and the ratio of humic acid to TOC of amended and unamended composts were very similar. The final respiration rates and Solvita® maturity index indicated that the finished compost was well matured and aged. Alum has a high potential to reduce ammonia emissions and concomitantly enhance fertilizer N value. Zeolite further reduces ammonia emissions, and improves fertilizer quality, by serving as a slow-release N source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Tiquia and N. F. Y. Tam, Biores. Technol., 72, 1 (2000).

    Article  CAS  Google Scholar 

  2. K. Baek, H. J. Shin, H.-H. Lee, Y.-S. Jun and J.-W. Yang, Korean J. Chem. Eng., 19, 627 (2002).

    Article  CAS  Google Scholar 

  3. K. Kuroda, D. Hanajima, Y. Fukumoto, K. Suzuki, S. Kawamoto, J. Shima and K. Haga, Biosci. Biotechnol. Biochem., 68, 286 (2004).

    Article  CAS  Google Scholar 

  4. P. B. DeLaune, P. A. Moore, T. C. Daniel and J. L. Lemunyon, J. Environ. Qual., 33, 728 (2004).

    Article  CAS  Google Scholar 

  5. M. Kithome, J. W. Paul and A. A. Bomke, J. Environ. Qual., 28, 194 (1999).

    Article  CAS  Google Scholar 

  6. J. H. Hong and K. J. Park, Biores. Technol., 96, 741 (2005).

    Article  CAS  Google Scholar 

  7. P. H. Patterson and Adrizal, J. Appl. Poult. Res., 14, 638 (2005).

    Google Scholar 

  8. D. R. Smith, P. A. Moore Jr., B. E. Haggard, C. V. Maxwell, T. C. Daniel, K. Van Devander and M. E. Davis, Anim. Sci., 82, 605 (2004).

    CAS  Google Scholar 

  9. H. Li, H. Xin, Y. Liang and R. T. Burns, J. Appl. Poult. Res., 17, 421 (2008).

    Article  CAS  Google Scholar 

  10. R. B. Gómez, F. V. Lima and A. S. Ferrer, Waste Manage. Res., 24, 37 (2006).

    Article  Google Scholar 

  11. A. S. Kalamdhad, M. Pasha and A. A. Kazmi, Res. Conserv. Recycl., 52, 829 (2008).

    Article  Google Scholar 

  12. A. Tremier, A. de Guardia, C. Massiani, E. Paul d and J. L. Martel, Biores. Technol., 96, 169 (2005).

    Article  CAS  Google Scholar 

  13. C. Chroni, A. Kyriacou, T. Manios and K.-E. Lasaridi, Biores. Technol., 100, 3745 (2009).

    Article  CAS  Google Scholar 

  14. D. P. Komilis, Waste Manage., 26, 82 (2006).

    Article  CAS  Google Scholar 

  15. C. Sundberg, S. Smårs and H. Jönsson, Biores. Technol., 98, 145 (2004).

    Article  Google Scholar 

  16. I. H. Choi and P. A. Moore, J. Appl. Poult. Res., 17, 454 (2008).

    Article  CAS  Google Scholar 

  17. G. F. Huang, J. W. C. Wong, Q. T. Wu and B. B. Nagar, Waste Manage., 24, 805 (2004).

    Article  CAS  Google Scholar 

  18. A. M. Lefcourt and J. J. Meisinger, J. Dairy Sci., 84, 1814 (2001).

    Article  CAS  Google Scholar 

  19. M. J. W. Kithome, J. W. Paul, L. M. Lavkulich and A.A. Bomke, Soil Sci. Soc. Am. J., 62, 622 (1998).

    Article  CAS  Google Scholar 

  20. R. L. Mulvaney, in Methods of Soil Analysis, J.M. Bartels Ed., Soil Science Society of America, Inc., Madison (1996).

    Google Scholar 

  21. G. Baquerizo, J. P. Maestre, T. Sakuma, M. A. Deshusses, X. Gamisans, D. Gabriel and J. Lafuente, Chem. Eng. J., 113, 205 (2005).

    Article  CAS  Google Scholar 

  22. S. Park and W. Bae, Process Biochem., 44, 631 (2009).

    Article  CAS  Google Scholar 

  23. I. M. Dwairi, Environ. Geol., 34, 1 (1998).

    Article  CAS  Google Scholar 

  24. B. Bonelli, B. Onida, B. Fubini, C.O. Arean and E. Garrone, Langmuir, 16, 4976 (2000).

    Article  CAS  Google Scholar 

  25. W. F. Brinton, Biocycle, 42, 74 (2001).

    Google Scholar 

  26. D. D. Cabanas-Vargas, M. A. Sanchez-Monedero, S. T. Urpilainen, A. Kamilaki and E. I. Stentiforg, Ingenieria, 9, 25 (2005).

    Google Scholar 

  27. L. Leita and M. De Nobili, J. Environ. Qual., 20, 73 (1991).

    Article  CAS  Google Scholar 

  28. Y. Inbar, Y. Hadar and Y. Chen, J. Environ. Qual., 22, 857 (1993).

    Article  Google Scholar 

  29. M. Pietro and C. Paola, Thermochim. Acta, 413, 209 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Sook Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bautista, J.M., Kim, H., Ahn, DH. et al. Changes in physicochemical properties and gaseous emissions of composting swine manure amended with alum and zeolite. Korean J. Chem. Eng. 28, 189–194 (2011). https://doi.org/10.1007/s11814-010-0312-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0312-6

Key words

Navigation