Skip to main content

Advertisement

Log in

Hydrogen production from wastewater using a microbial electrolysis cell

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A Microbial electrolysis cell (MEC) was designed to produce a useful and valuable product, hydrogen gas, during the wastewater treatment process. Hydrogen can be produced using the MEC with an applied voltage of over 0.4 V, and the hydrogen yields gradually increased with the increasing of applied voltage. A maximum overall hydrogen efficiency of 21.2% was achieved at an applied voltage of 1.0 V with acetate as substrate, corresponding to a volumetric hydrogen production rate of approximately 0.095 m3 H2/m3 reactor liquid volume/day. A volumetric hydrogen production rate of 0.061 m3 H2/m3 reactor liquid volume/day was achieved when piggery wastewater was fed to the MEC, and the chemical oxygen demand removal rate ranged from 45 to 52%. The results demonstrated that the wastewater, especially an organic-rich item such as piggery wastewater, could be feasibly treated based on this MEC system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Hussy, F. R. Hawkes, R. Dinsdale and D. L. Hawkes, Biotechnol. Bioeng., 84, 619 (2003).

    Article  CAS  Google Scholar 

  2. J. Miyake, M. Miyake and Y. Asada, J. Biotechnol., 70, 89 (1999).

    Article  CAS  Google Scholar 

  3. B. E. Logan, Environ. Sci. Technol., 38, 160A (2004).

    Article  CAS  Google Scholar 

  4. P. A. Selembo, J.M. Perez, W. A. Lloyd and B. E. Logan, Int. J. Hydrog. Energy, 34, 5357 (2009).

    Article  Google Scholar 

  5. B. E. Logan, D. Call, S. Chen, H.V.M. Hamelers, T. H. J.A. Sleutels, A.W. Jeremiasse and R.A. Rozendal, Environ. Sci. Technol., 42, 8630 (2008).

    Article  CAS  Google Scholar 

  6. H. Liu, S. Grot and B. E. Logan, Environ. Sci. Technol., 39, 4317 (2005).

    Article  CAS  Google Scholar 

  7. C. H. Li and H. H. P. Fang, Crit. Rev. Environ. Sci. Technol., 37, 1 (2007).

    Article  Google Scholar 

  8. L.A. Angenent, K. Karim, M.H. AI-Dahhan, B.A. Wrenn and R. Domiguez-Espinosa, Trends Biotechnol., 22, 477 (2004).

    Article  CAS  Google Scholar 

  9. D.B. Levin, L. Pitt and M. Love, Int. J. Hydrog. Energy, 29, 173 (2004).

    Article  CAS  Google Scholar 

  10. S.K. Chaudhuri and D. R. Lovely, Nat. Biotechnol., 21, 1229 (2003).

    Article  CAS  Google Scholar 

  11. S. E. Oh and B. E. Logan, Water Res., 39, 4673 (2005).

    Article  CAS  Google Scholar 

  12. C.M. Jeong, J.D. R. Choi, Y. Ahn and H.N. Chang, Korean J. Chem. Eng., 25, 535 (2008).

    Article  CAS  Google Scholar 

  13. N.G. Trinh, J.H. Park and B.W. Kim, Korean J. Chem. Eng., 26, 748 (2009).

    Article  CAS  Google Scholar 

  14. F. Scholz and U. Schroder, Nat. Biotechnol., 21, 1151 (2003).

    Article  CAS  Google Scholar 

  15. K. Rabaey, N. Boon, S. D. Siciliano, M. Verhaege and W. Verstraete, Appl. Environ. Microbiol., 70, 5373 (2004).

    Article  CAS  Google Scholar 

  16. K. Rabaey and W. Verstraete, Trends Biotechnol., 23, 291 (2005).

    Article  CAS  Google Scholar 

  17. Y.H. Jia, H. T. Tran, D. H. Kim, S. J. Oh, D.H. Park, R.H. Zhang and D. H. Ahn, Bioprocess. Biosyst. Eng., 31, 315 (2008).

    Article  CAS  Google Scholar 

  18. Z. L. Li, L. Yao, L. Kong and H. Liu, Bioresour. Technol., 99, 1650 (2008).

    Article  CAS  Google Scholar 

  19. P. Aelterman, K. Rabaey, H. T. Pham, N. Boon and W. Verstraete, Environ. Sci. Technol., 40, 3388 (2006).

    Article  CAS  Google Scholar 

  20. F. Zhao, F. Harnisch, U. Schroder, F. Scholz, P. Bogdanoff and I. Herrmann, Environ. Sci. Technol., 40, 5191 (2006).

    Google Scholar 

  21. J. Ditzig, H. Liu and B. E. Logan, Int. J. Hydrog. Energy, 32, 2296 (2007).

    Article  CAS  Google Scholar 

  22. W. Liu, A. Wang, N. Ren, X. Zhao, L. Liu, Z. Yu and D. Lee, Energy Fuels, 22, 159 (2008).

    Article  CAS  Google Scholar 

  23. R.A. Rozendal, H.V.M. Hamelers, R. J. Molenkamp and C. J. N. Buisman, Water Res., 41, 1984 (2007).

    Article  CAS  Google Scholar 

  24. S. Cheng and B. E. Logan, Proc. Natl. Acad. Sci. U.S.A., 104, 18871 (2007).

    Article  CAS  Google Scholar 

  25. J. Lee, N. T. Phung, I. S. Chang, B.H. Kim and H. C. Sung, FEMS Microbiol. Lett., 223, 185 (2003).

    Article  CAS  Google Scholar 

  26. D. Call and B. E. Logan, Environ. Sci. Technol., 42, 3401 (2008).

    Article  CAS  Google Scholar 

  27. K. J. Chae, M. J. Choi, J.W. Lee, F. F. Ajayi and I. S. Kim, Int. J. Hydrog. Energy, 33, 5184 (2008).

    Article  CAS  Google Scholar 

  28. R.A. Rozendal, H.V. M. Hamelers, G. J.W. Euverink, S. J. Metz and C. J. N. Buisman, Int. J. Hydrog. Energy, 31, 1632 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae Hee Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Y.H., Choi, J.Y., Ryu, J.H. et al. Hydrogen production from wastewater using a microbial electrolysis cell. Korean J. Chem. Eng. 27, 1854–1859 (2010). https://doi.org/10.1007/s11814-010-0310-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0310-8

Key words

Navigation