Skip to main content

Advertisement

Log in

Onset of buoyancy-driven convection in isotropic porous media heated from below

  • Rapid Communication
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A theoretical analysis of buoyancy-driven instability under transient basic fields is conducted in an initially quiescent, fluid-saturated, horizontal, isotropic porous layer. Darcy’s law is employed to explain characteristics of fluid motion, and Boussinesq approximation is used to consider the density variation. Under the principle of exchange of stabilities, a stability analysis is conducted based on the linear stability analysis and energy method and their modifications. The critical condition of onset of buoyancy-driven convection is obtained as a function of the Darcy-Rayleigh number. The propagation theory and the modified energy method under the self-similar coordinate suggest reasonable stability criteria and support each other. The former one based on the linear stability theory predicts more stable results than the latter based on the energy method. The growth period for disturbances to grow seems to be required until the instabilities are detected experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ennis-King, I. Preston and L. Paterson, Phys. Fluids, 17, 084107 (2005).

    Article  Google Scholar 

  2. X. Xu, S. Chen and D. Zhang, Adv. Water Res., 29, 397 (2006).

    Article  CAS  Google Scholar 

  3. A. Riaz, M. Hesse, H. A. Tchelepi and F.M. Orr Jr., J. Fluid Mech., 548, 87 (2006).

    Article  CAS  Google Scholar 

  4. C.W. Horton and F. T. Rogers, J. Appl. Phys., 6, 367 (1945).

    Article  Google Scholar 

  5. E. R. Lapwood, Proc. Camb. Phil. Soc., 44, 508 (1948).

    Article  Google Scholar 

  6. J.-P. Caltagirone, Q. J. Mech. Appl. Math., 33, 47 (1980).

    Article  Google Scholar 

  7. D.Y. Yoon and C.K. Choi, Korean J. Chem. Eng., 6, 144 (1989).

    Article  CAS  Google Scholar 

  8. K.-K. Tan, T. Sam and H. Jamaludin, Int. J. Heat Mass Transfer, 46, 2857 (2003).

    Article  Google Scholar 

  9. M. Kaviany, Int. J. Heat Mass Transfer, 27, 2101 (1984).

    Article  Google Scholar 

  10. C.K. Choi, J. H. Park and M. C. Kim, Heat Mass Transfer, 41, 155 (2004).

    CAS  Google Scholar 

  11. C. K. Choi, J. H. Park, M. C. Kim, J. D. Lee, J. J. Kim and E. J. Davis, Int. J. Heat Mass Transfer, 47, 4377 (2004).

    Article  CAS  Google Scholar 

  12. M. C. Kim, J. H. Park and C. K. Choi, Chem. Eng. Sci., 60, 5363 (2005).

    Article  CAS  Google Scholar 

  13. S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, Oxford University Press (1961).

  14. I.G. Hwang and C.K. Choi, J. Crystal Growth, 220, 326 (2000).

    Article  CAS  Google Scholar 

  15. I.G. Hwang and C.K. Choi, J. Crystal Growth, 267, 714 (2004).

    Article  CAS  Google Scholar 

  16. K. H. Kang and C. K. Choi, Phys. Fluids, 9, 7 (1998).

    Article  Google Scholar 

  17. K.H. Kang, C.K. Choi and I.G. Hwang, AIChE J., 46, 15 (2000).

    Article  CAS  Google Scholar 

  18. M. C. Kim and C. K. Choi, Chem. Eng. Sci., 60, 599 (2005).

    Article  CAS  Google Scholar 

  19. M. C. Kim, S. Kim and C.K. Choi, Eur. J. Mech. B: Fluid, 25, 74 (2006).

    Article  Google Scholar 

  20. S. F. Shen, J. Aerospace Sci., 28, 397 (1961).

    Google Scholar 

  21. Y. Ben, E. A. Demekhin and H.-C. Chang, Phys. Fluids, 14, 999 (2002).

    Article  CAS  Google Scholar 

  22. J.W. Elder, J. Fluid Mech., 27, 609 (1967).

    Article  Google Scholar 

  23. D. D. Joseph, Arch. Rational Mech. Anal., 22, 163 (1966).

    Article  Google Scholar 

  24. G.M. Homsy, J. Fluid Mech. 60, 129 (1973).

    Article  Google Scholar 

  25. J.W. Elder, J. Fluid Mech., 32, 69 (1968).

    Article  Google Scholar 

  26. T. D. Foster, Phys. Fluids, 12, 2482 (1969).

    Article  Google Scholar 

  27. B. Straughan, The Energy Method, Stability, and Nonlinear Convection, Springer-Verlag (1992).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Chan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M.C. Onset of buoyancy-driven convection in isotropic porous media heated from below. Korean J. Chem. Eng. 27, 741–747 (2010). https://doi.org/10.1007/s11814-010-0149-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0149-z

Key words

Navigation