Skip to main content
Log in

Modeling and simulation of a simulated moving bed for adsorptive para-xylene separation

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A multi-cell model was developed to analyze the behavior of a simulated moving bed process for adsorptive para-xylene separation from other xylene isomers. A novel technology for a semi-batch mode adsorption experiment was developed and used for fast and accurate data collection. Interaction parameters between different species for a multi-component extended Langmuir isotherm were estimated from single and multi-component adsorption experiments and implemented into the model. The parameters such as porosities, particle density and mass transfer coefficients were obtained from adsorbent analysis and commercial plant operation. To resolve the problem of high dimensionality, a cell-by-cell approach was proposed to solve the model. The recovery and purity of para-xylene as well as the concentration profile calculated from the model were in good agreement with the actual data. The effects of channeling and feed composition change were simulated, and they turned out to be physically meaningful. The simulation model will be used for operation condition optimization, trouble shooting, and productivity enhancement including a configuration change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Pang, Global petrochemical review, UOP’s Korea Technology Seminar, Jejudo (2004).

    Google Scholar 

  2. G. Ash, K. Barth, G. Hotier, L. Mank and P. Renard, Revue De L Institut Francais Du Petrole, 49, 541 (1994).

    CAS  Google Scholar 

  3. D. B. Broughton and C. G. Gerhold, US Patent 2,985,589 (1961).

  4. D. B. Broughton, R. W. Neuzil, J. M. Pharis and C. S. Brearley, Chem. Eng. Prog., 66, 70 (1970).

    CAS  Google Scholar 

  5. M. M. Kearney and K. L. Hieb, US Patent 5,102,553 (1992).

  6. J. Kim, N. Abunasser and P. Wankat, Korean J. Chem. Eng., 22, 619 (2005).

    Article  CAS  Google Scholar 

  7. O. Ludemann-Hombourger, M. Bailly and R. M. Nicoud, Sep. Sci. Technol., 35, 1285 (2000).

    Article  CAS  Google Scholar 

  8. O. Ludemann-Hombourger, R. M. Nicoud and M. Bailly, Sep. Sci. Technol., 35, 1829 (2000).

    Article  CAS  Google Scholar 

  9. H. Schramm, M. Kaspereit, A. Kienle and A. Seidel-Morgenstern, Chem. Eng. Technol., 25, 1151 (2002).

    Article  CAS  Google Scholar 

  10. UOP, Parex process, www.uop.com (accessed).

  11. D. C. S. Azevedo, S. B. Neves, A. E. Rodrigues, C. L. Cavalcante Jr. and S. P. Ravagnani, Anais do I Encontro Brasileiro sobre Adsorção, Fortaleza, 93 (1997).

  12. J. Gu, W. Jiang and X. Gu, J. East China Univ. Sci. Technol., 23, 725 (1997).

    CAS  Google Scholar 

  13. K. Lee, Korean J. Chem. Eng., 26, 468 (2009).

    Article  CAS  Google Scholar 

  14. Y. Lim, Korean J. Chem. Eng., 21, 836 (2004).

    Article  CAS  Google Scholar 

  15. C. Migliorini, M. Mazzotti and M. Morbidelli, AIChE J., 45, 1411 (1999).

    Article  CAS  Google Scholar 

  16. M. Minceva and A. E. Rodrigues, Sep. Sci. Technol., 38, 1463 (2003).

    Article  CAS  Google Scholar 

  17. M. Minceva and A. E. Rodrigues, Ind. Eng. Chem. Res., 41, 3454 (2002).

    Article  CAS  Google Scholar 

  18. Z. Tong, Z. Ge and C. Yang, ACTA PETROLEI SINICA PETROLEUM PROCESSING SECTION, 11, 36 (1995).

    CAS  Google Scholar 

  19. C.-N. Wei, Diagnosis of manufacturing plant problems through process model parameter update, International Federation of Automation Control Conference, Maastricht (1989).

    Google Scholar 

  20. R. H. Fowler and E. A. Guggenheim, Statistical thermodynamics, Cambridge University Press, Cambridge (1939).

    Google Scholar 

  21. E. Glueckauf, Trans. Faraday Soc., 51, 1540 (1955).

    Article  CAS  Google Scholar 

  22. G. Guiochon, S. Golshan-Shirazi and A. M. Katti, Fundamentals of nonlinear and preparative chromatography, Academic Press, Boston (1994).

    Google Scholar 

  23. D. M. Ruthven, Principles of adsorption and adsorption processes, Wiley-Interscience (1984).

  24. F. Charton and R. M. Nicoud, J. Chromatography A, 702, 97 (1995).

    Article  CAS  Google Scholar 

  25. U. P. Ernst and J. T. Hsu, Ind. Eng. Chem. Res., 28, 1211 (1989).

    Article  CAS  Google Scholar 

  26. J. J. Van Deemter, F. J. Zuiderweg and A. Klinkenberg, Chem. Eng. Sci., 5, 1 (1956).

    Article  Google Scholar 

  27. Grace Davison, Adsorbents for process application, www.gracedavison.com (accessed).

  28. D. W. Breck, Zeolite molecular sieves: Structure, chemistry and use, John Wiley & Sons, New York (USA) (1974).

    Google Scholar 

  29. C. W. Gear, Numerical initial value problems in ordinary differential equations, Prentice Hall, Englewood Cliffs (1971).

    Google Scholar 

  30. A. L. Myers and W. D. Seider, Introduction to chemical engineering and computer calculations, Prentice-Hall Englewood Cliffs, NJ (1976).

    Google Scholar 

  31. C. Beauvais, A. Boutin and A. H. Fuchs, Adsorption-Journal of the International Adsorption Society, 11, 279 (2005).

    Google Scholar 

  32. I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).

    Article  CAS  Google Scholar 

  33. R. M. Nicoud, G. Fuchs, P. Adam, M. Bailly, E. Küsters, F. D. Antia, R. Reuille and E. Schmid, Chirality NY, 5, 267 (1993).

    Article  CAS  Google Scholar 

  34. H. Freundlich, Colloid and capillary chemistry, 3rd German Edn. Methuen, London (1926).

    Google Scholar 

  35. S. Sips, J. Chem. Phys., 16, 490 (1948).

    Article  CAS  Google Scholar 

  36. J. K. Moon, D. K. Keum and W. K. Lee, Korean J. Chem. Eng., 6, 172 (1989).

    Article  CAS  Google Scholar 

  37. A. L. Myers and J. M. Prausnitz, AIChE J., 11, 121 (1965).

    Article  CAS  Google Scholar 

  38. T. H. Chilton and A. P. Colburn, Trans. Am. Inst. Chem. Eng., 26, 178 (1931).

    Google Scholar 

  39. S. Ergun, Chem. Eng. Prog., 48, 89 (1952).

    CAS  Google Scholar 

  40. J. Kozeny, Sitzungsberichte der Akademie der Wissenschaften in Wien, MATHEMATISCH-naturwissenschaftliche Klasse, Abteilung IIa, 136, 271 (1927).

    Google Scholar 

  41. J. Lee and N. C. Shin, Korea Patent Korean Patent issued, 0589122 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chonghun Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Shin, N.C., Lim, Y. et al. Modeling and simulation of a simulated moving bed for adsorptive para-xylene separation. Korean J. Chem. Eng. 27, 609–618 (2010). https://doi.org/10.1007/s11814-010-0078-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0078-x

Key words

Navigation