Skip to main content
Log in

A modelling study on hydrolysis of whey lactose and stability of β-galactosidase

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In the present study, the effect of process conditions on whey lactose hydrolysis and enzyme inactivation were investigated. The experiments were carried out in 250 mL of 25 mM phosphate buffer solution by using β-galactosidase produced from Kluyveromyces marxianus lactis in a batch reactor system. The degree of lactose hydrolysis (%) and residual enzyme activity (%) against time were investigated versus lactose concentration, enzyme concentration, temperature and pH. The mathematical models were derived from the experimental data to show the effect of process conditions on lactose hydrolysis and residual enzyme activity (in the presence and absence of lactose). At the optimum process conditions obtained (50 g/L of lactose concentration, 1 mL/L of enzyme concentration, 37 °C of temperature and pH 6.5), 81% of lactose was hydrolyzed and enzyme lost its activity by 32%. The activation energy for hydrolysis reaction (E A ) and the enzymatic inactivation energy (E D ) were calculated as 52.7 kJ/mol and 96.7 kJ/mol. Mathematical models at various process conditions have been confirmed with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Pessela, C. Mateo, M. Fuentes, A. Vian, J.L. Garcia, A.V. Carrascosa, J.M. Guisan and R. F. Lafuente, Enzyme Microb. Tech., 33, 199 (2003).

    Article  CAS  Google Scholar 

  2. S. Curcio, V. Calabro and G. Iorio, J. Membrane Sci., 273, 129 (2006).

    Article  CAS  Google Scholar 

  3. A. Tanríseven and Ş Doğan, Process Biochem., 38 27 (2002).

    Article  Google Scholar 

  4. M. Ladero, A. Santos, J. L. Garcia, A.V. Carrascosa, F. Pessela and F. Garcia-Ochoa, Enzyme Microb. Tech., 30, 392 (2002).

    Article  CAS  Google Scholar 

  5. A. Santos, M. Ladero and F. Garcia-Ochoa, Enzyme Microb. Tech., 22, 558 (1998).

    Article  CAS  Google Scholar 

  6. S. Novalin, W. Neuhaus and K.D. Kulbe, J. Biotechnol., 119, 212 (2005).

    Article  CAS  Google Scholar 

  7. J. Szczodrak, J. Mol. Catal. B-Enzym, 10, 631 (2000).

    Article  CAS  Google Scholar 

  8. A. E. Al-Muftah and I. M. Abu-Reesh, Biochem. Eng. J., 27, 167 (2005).

    Article  CAS  Google Scholar 

  9. L. Burin, K. Jouppila, Y.H. Roos, J. Kansikas and M. P. Buera, Int. Dairy J., 14, 517 (2004).

    Article  CAS  Google Scholar 

  10. J. Kim, D.Y. Choi and K. H. Row, Korean J. Chem. Eng., 20(3), 538 (2003).

    Article  CAS  Google Scholar 

  11. E. Jurado, F. Camacho, G. Luzon and J.M. Vicaria, Enzyme Microb. Tech., 31, 300 (2002).

    Article  CAS  Google Scholar 

  12. I. Roy and M. N. Gupta, Process Biochem., 39, 325 (2003).

    Article  CAS  Google Scholar 

  13. M. Ladero, A. Santos, J. L. Garcia and F. Garcia-Ochoa, Enzyme Microb. Tech., 29, 181 (2001).

    Article  CAS  Google Scholar 

  14. M. Ladero, A. Santos, J. L. Garcia and F. Garcia-Ochoa, Enzyme Microb. Tech., 27, 583 (2000).

    Article  CAS  Google Scholar 

  15. T. Vasiljevic and P. Jelen, Innov. Food Sci. Emerg. Technol., 3, 175 (2002).

    Article  CAS  Google Scholar 

  16. C. R. Carrara and A. C. Rubiolo, Chem. Eng. J., 65, 93 (1997).

    Article  CAS  Google Scholar 

  17. N. Papayannakos, G. Markas and D. Kekos, Chem. Eng. J., 52, B1 (1993).

    Article  CAS  Google Scholar 

  18. S. T. Yang and M. R. Okos, Biotechnol. Bioeng., 33, 873 (1989).

    Article  CAS  Google Scholar 

  19. D.A. Nielsen, J. Chou, A. J. MacKrell, M. J. Casadaban and D. F. Steiner, Proc. Natl. Acad. Sci. USA, 80(17), 5198 (1983).

    Article  CAS  Google Scholar 

  20. G. R. Craven, E. J. Steers and C. B. Anfinsen, J. Biol. Chem., 240, 2468 (1965).

    CAS  Google Scholar 

  21. M. P. Mariotti, H. Yamanaka, A. R. Araujo and H. C. Trevisan, Braz. Arch. Biol. Technol., 51(6), 1233 (2008).

    Article  CAS  Google Scholar 

  22. G.X.M. Li, Q. Z.K. Zhou and X.D. Chen, Chem. Eng. Process., 46(5), 497 (2007).

    Article  CAS  Google Scholar 

  23. H.U. Bergmeyer and E. Bernt, In determination with glucose oxidase and peroxsidase, In: Bergmeyer HU, editor, Methods of enzymatic analysis, 2nd ed., Academic Press, New York (1974).

    Google Scholar 

  24. G. Toscano, D. Pirozzi, M. Maremonti and G. Greco Jr., Biotechnol. Bioeng., 44, 682 (1994).

    Article  CAS  Google Scholar 

  25. A. Sadana and J. M. Henley, Biotechnol. Bioeng., 30, 717 (1987).

    Article  CAS  Google Scholar 

  26. M. Di Serio, C. Maturo, E. De Alteriis, P. Parascandola, R. Tesser and E. Santacesaria, Catal. Today, 79–80, 333 (2003).

    Article  Google Scholar 

  27. T. Haider and Q. Husian, J. Sci. Food Agr., 87(7), 1278 (2007).

    Article  CAS  Google Scholar 

  28. T. Haider and Q. Husain, Chem. Eng. Process., 48(1), 576 (2009).

    Article  CAS  Google Scholar 

  29. N. Şener, D. K. Apar and B. Özbek, Process Biochem., 41, 1493 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belma Özbek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demirhan, E., Apar, D.K. & Özbek, B. A modelling study on hydrolysis of whey lactose and stability of β-galactosidase. Korean J. Chem. Eng. 27, 536–545 (2010). https://doi.org/10.1007/s11814-010-0062-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0062-5

Key words

Navigation