Skip to main content
Log in

The optimization of the photo-oxidation parameters to remediate wastewater from the textile dyeing industry in a continuous stirred tank reactor

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The remediation of textile dying wastewater was carried out at ambient temperatures in a pilot-scale continuous stirred tank reactor by using the photo-Fenton oxidation process. The preliminary results suggest that the treatment system reached a steady state condition within 5–10 min after it was started up. By using a 2k factorial design, the effects of various parameters on the removal efficiency of color, BOD and COD were identified under steady state conditions. The removal efficiencies of color and BOD were affected by the feed rate of H2O2 and Fe2+, whereas none of the parameters in the investigated ranges affected the removal efficiency of COD. Consequently, using univariate analysis to investigate higher parameter range values, the optimum conditions for treating textile wastewater were found to be 25 ml H2O2/min, 5 ml Fe2+/min and 90 W UV-A power for 20 min. In addition, the removal of all pollutants was enhanced within the acidic pH range. Approximately 69.2, 99.4 and 48.5% of color, BOD and COD were removed, respectively. However, the concentration of TDS increased slightly during the treatment period due to the formation of new species or intermediate oxidation products. Nevertheless, all values of pollutants in the treated wastewater except COD were in the range of the standard values permitted for discharge into the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DPPEA Water Efficiency Industry Specific Processes, www.p2pays.org/ref/04/03098.pdf. (1996).

  2. J. Sójka-L, T. Koprowski, W. Machnowski and H. H. Knudsen, Desalination, 119, 1 (1998).

    Article  Google Scholar 

  3. I.D. Desai and I. S. Bhardwaj, Recent biotechnological trends in industrial effluent treatment, Biotech Consortium Indai Ltd., New Delhi (1995).

    Google Scholar 

  4. I.M. Banat, P. Nigam, D. Singh and R. Marchant, Bioresource Technol., 58, 217 (1996).

    Article  CAS  Google Scholar 

  5. S. S. Shah, J. D. Desai, C. Ramakrishna and N.M. Bhatt, J. Ferment. Bioeng., 86, 215 (1998).

    Article  Google Scholar 

  6. P. C. Venceslau, S. Tom and J. J. Simon, Environ. Technol., 15, 917 (1994).

    Article  Google Scholar 

  7. P. C. Vendevivere, R. Bianchi and W. Verstraete, J. Chem. Technol., 72, 289 (1998).

    Article  Google Scholar 

  8. H. Barlas and T. Akgun, Fresenius Environ. Bul., 9, 597 (2000).

    CAS  Google Scholar 

  9. M. S. E. Abdo and R. S. Al-Ameeri, J. Environ. Sci. Health A., 22, 27 (1987).

    Article  Google Scholar 

  10. L. Naumczyk, L. Szpyrkowicz and F. Zilio-Grandi, Water Sci. Technol., 34, 216 (1996).

    Google Scholar 

  11. A.G. Vlyssides and C. J. Israilides, J. Environ. Sci. Health A., 33, 847 (1998).

    Article  Google Scholar 

  12. G. Ciardelli, G. Capannelli and A. Bottino, Water Sci. Technol., 44, 61 (2001).

    CAS  Google Scholar 

  13. N. H. Ince and G. Tezcanl, Water Sci. Technol., 40, 183 (1999).

    CAS  Google Scholar 

  14. L. Los and J. Perkowski, Fibers Text. East. Eur., 11, 81 (2003).

    Google Scholar 

  15. S. Shimoda, H. W. Prengle and J. M. Symons, Water Manage., 17, 475 (1975).

    Google Scholar 

  16. S. H. Lin and C. L. Cho, Water Res., 31, 1825 (1997).

    Article  Google Scholar 

  17. L. Szpyrkowicz, C. Juzzolino and S. N. Kaul, Water Res., 35, 2129 (2001).

    Article  CAS  Google Scholar 

  18. S. F. Kang, C. H. Liao and M. C. Chen, Chemosphere, 46, 979 (2002).

    Google Scholar 

  19. N. Koprivanaca, H. Kujsi’ca, D. Vujevica, I. Peternela and B. R. Lockeb, J. Hazard. Mater. B, 117, 113 (2005).

    Article  Google Scholar 

  20. S. F. Kang, C. H. Liao and H. P. Hung, J. Hazard. Mater. B, 65, 317 (1999).

    Article  CAS  Google Scholar 

  21. B. C. Faust and J. Hoigne, Atmos. Environ. A, 24, 791 (990).

    Google Scholar 

  22. C. Walling and S. Kato, J. American Chem. Soc., 93, 4275 (1971).

    Article  CAS  Google Scholar 

  23. S. F. Kang, C. H. Liao and S. T. Po, Chemosphere, 41, 1287 (2000).

    Article  CAS  Google Scholar 

  24. APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater, 20th ed. Part 3111 B (1998).

  25. C. Sahunin, J. Kaewboran and M. Hunsom, Sci. Asia, 32, 181 (2006).

    Article  CAS  Google Scholar 

  26. D.C. Montgomery, Design and analysis of experiments, 5th ed., John Wiley & Sons Ltd., New York 2001.

    Google Scholar 

  27. S. L. Marco and A. P. Jose, Dyes Pigments, 71, 235 (2005).

    Google Scholar 

  28. S. Kongjao, S. Damronglerd and M. Hunsom, Korean J. Chem. Eng., 24, 730 (2007).

    Article  CAS  Google Scholar 

  29. H. J. Benkelberg and P. Warneck, J. Phys. Chem., 99, 5214 (1995).

    Article  CAS  Google Scholar 

  30. S.M. Kim, S. Geissen and A. Vogelpohl, Water Sci. Technol., 35, 239 (1999).

    Google Scholar 

  31. J. J. Pignatello, D. Liu and P. Huston. Envir. Sci. Technol., 33, 1832 (1999).

    Article  CAS  Google Scholar 

  32. H. Katsumata, S. Kaneco, T. Suzuki, K. Ohta and Y. Yobiko, Chem. Eng. J., 108, 269 (2005).

    Article  CAS  Google Scholar 

  33. E.G. Solozhenko, N.M. Soboleva and V.V. Goncharuk, Water Res., 29, 2206 (1995).

    Article  CAS  Google Scholar 

  34. M. Yang, J. Hu and K. Ito, Environ. Technol., 19, 183 (1998).

    Article  CAS  Google Scholar 

  35. M. Muruganandham and M. Swaminathan, Dyes Pigments, 63, 315 (2004).

    Article  CAS  Google Scholar 

  36. K. Kadirvelu, M. Palanival, R. Kalpana and S. Rajeswari, Biores. Technol., 74, 263 (2000).

    Article  CAS  Google Scholar 

  37. H. Selcuk, Dyes Pigments, 64, 217 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mali Hunsom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kortangsakul, S., Hunsom, M. The optimization of the photo-oxidation parameters to remediate wastewater from the textile dyeing industry in a continuous stirred tank reactor. Korean J. Chem. Eng. 26, 1637–1644 (2009). https://doi.org/10.1007/s11814-009-0247-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0247-y

Key words

Navigation