Skip to main content

Advertisement

Log in

Carbon dioxide reforming of methane with a free energy minimization approach

  • Presented at the 6th Korea-China Workshop on Clean Energy Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Carbon dioxide reforming of methane to syngas is one of the primary technologies of the new poly-generation energy system on the basis of gasification gas and coke oven gas. A free energy minimization is applied to study the influence of operating parameters (temperature, pressure and methane-to-carbon dioxide ratio) on methane conversion, products distribution, and energy coupling between methane oxidation and carbon dioxide reforming methane. The results show that the methane conversion increases with temperature and decreases with pressure. When the methane-to-carbon dioxide ratio increases, the methane conversion drops but the H2/CO ratio increases. By the introduction of oxygen, an energy balance in the process of the carbon dioxide reforming methane and oxidation can be realized, and the CO/H2 ratio can be adjusted as well without water-gas shift reaction for Fischer-Tropsch or methanol synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. S. Jing, H. Lou, L. Y. Mo and X. M. Zheng, Energy Conversion and Management, 47, 459 (2006).

    Article  CAS  Google Scholar 

  2. S. W. Nam, S. P. Yoon, H. Y. Ha, S. A. Hong and A. P. Maganyuk, Korean J. Chem. Eng., 17, 288 (2000).

    Article  CAS  Google Scholar 

  3. Y. Matsumura and T. Nakamori, Applied Catalysis A: General, 1, 107 (2004).

    Article  CAS  Google Scholar 

  4. J. Zhu, D. Zhang and K. D. King, Fuel, 80, 899 (2001).

    Article  CAS  Google Scholar 

  5. K. H. Kim, S. Y. Lee and K. J. Yoon, Korean J. Chem. Eng., 23, 356 (2006).

    Article  CAS  Google Scholar 

  6. B. B. Hwang, Y. K. Yeo and B. K. Na, Korean J. Chem. Eng., 20, 631 (2003).

    Article  CAS  Google Scholar 

  7. R. Xiao, M. Zhang, B. Jin, Y. Huang and H. Zhou, Energy & Fuels, 20, 715 (2006).

    Article  CAS  Google Scholar 

  8. W. Zhong and M. Zhang, AIChE J., 52, 924 (2006).

    Article  CAS  Google Scholar 

  9. R. Xiao, M. Zhang, B. Jin and X. Liu, Can. J. Chem. Eng., 80, 800 (2002).

    Article  CAS  Google Scholar 

  10. A. I. Tsyganok, M. Inaba, T. Tsunoda, S. Hamakawa, K. Suzuki and T. Hayakawa, Catalysis Communication, 4, 493 (2003).

    Article  CAS  Google Scholar 

  11. V. A. Tsipouriari and X. E. Verkios, Catalysis Today, 64, 83 (2001).

    Article  CAS  Google Scholar 

  12. S. J. Kong, H. J. Jin and Y. J. Ki, Korean J. Chem. Eng., 21, 793 (2004).

    Article  CAS  Google Scholar 

  13. X. Li, J. R. Grace, A. P. Watkinson, C. J. Lim and A. Ergüdenler, Fuel, 80, 195 (2001).

    Article  CAS  Google Scholar 

  14. W. Q. Zhang and Z. S. Zhang, Journal of Armory, 6, 812 (2005).

    Google Scholar 

  15. Y. Li, J. Xiao and M. Y. Zhang, Journal of Fuel Chemistry and Technology, 5, 556 (2005).

    Google Scholar 

  16. W. R. Smith and R. W. Missen, Chemical reaction equilibrium analysis: theory and algorithms, Wiley Publication, New York (1982).

    Google Scholar 

  17. Van F. Zegeren and S. H. Storey, The computation of chemical equilibria, Cambridge University Press, Cambridge (1970).

    Google Scholar 

  18. R. Holub and P. Vonka, The chemical equilibrium of gaseous systems, Reidel Publications, Dordrecht (1976).

    Google Scholar 

  19. Lisboa-Filho, Wido H. Schreiner, Edson Roberto Leite and Elson Longo, Applied Catalysis A: General, 2, 211 (2003).

    Google Scholar 

  20. Y. Matsumura and T. Nakamori, Applied Catalysis A: General, 1, 107 (2004).

    Article  CAS  Google Scholar 

  21. V. R. Choudhary, A. M. Rajput and B. Prabhakar, Journal of Catalysis, 139, 326 (1993).

    Article  CAS  Google Scholar 

  22. R. G. Ding, Z. F. Yan and L. Qian, Journal of Natural Gas Chemistry, 1, 50 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baosheng Jin.

Additional information

This work was presented at the 6th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Jin, B. & Xiao, R. Carbon dioxide reforming of methane with a free energy minimization approach. Korean J. Chem. Eng. 24, 688–692 (2007). https://doi.org/10.1007/s11814-007-0027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-007-0027-5

Key words

Navigation