Skip to main content
Log in

Complete modeling for systems of a marine diesel engine

  • Published:
Journal of Marine Science and Application Aims and scope Submit manuscript

Abstract

This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine’s output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basbous T, Younes R, Ilinca A, Perron J (2012). Pneumatic hybridization of a diesel engine using compressed air storage for wind-diesel energy generation. Energy, 38(1), 264–275. DOI: 10.1016/j.energy.2011.12.003

    Article  Google Scholar 

  • Chase MW, Jr. Davies CA, Downey JR, Jr. Frurip DJ, McDonald RA, Syverud AN (1985). JANAF Thermochemical Tables, 3rd ed. J. Phys. Chem. Ref. Data, 14(1), 1499.

    Google Scholar 

  • Chun SM (2003). Network analysis of an engine lubrication system. Tribology International, 36(1), 609–617. DOI:10.1016/S0301-679X(02)00266-9

    Article  Google Scholar 

  • De Persis C, Kallesøe CS (2008). Proportional and proportional-integral controllers for a nonlinear hydraulic network. Proceedings of the 17th World Congress of the International Federation of Automatic Control, Seoul, Korea, 319–324. DOI: 10.3182/20080706-5-KR-1001.00054

    Google Scholar 

  • De Persis C, Kallesøe CS (2009a). Pressure regulation in nonlinear hydraulic networks by positive controls. Proceedings of the 10th European Control Conference, Budapest, Hungary, 1371–1383. DOI: 10.1109/TCST.2010.2094619

    Google Scholar 

  • De Persis C, Kallesøe CS (2009b). Quantized controllers distributed over a network: An industrial case study. Proceedings of the 17th Mediterranean Conference on Control and Automation, Thessaloniki, Greece, 616–621. DOI: 10.1109/MED.2009.5164611

    Google Scholar 

  • Ferguson CR, Kirkpatrick AT (2001). Internal combustion engines: Applied thermosciences. 2nd edition. John Wiley & Sons, Inc., New York, 287–292.

    Google Scholar 

  • Fossen TI (2002). Marine control systems: Guidance, navigation and control of ships, rigs and underwater vehicles. Marine Cybernetics, Trondheim, Norway, 471–473. DOI: 10.2514/1.17190

    Google Scholar 

  • Guibert P (2005). Modélisation du cycle moteur—Approche zérodimensionnelle. Tech. Ing. Génie Mécanique.

    Google Scholar 

  • Gupta VK, Zhang Z, Sun Z (2011). Modeling and control of a novel pressure regulation mechanism for common rail fuel injection systems. Applied Mathematical Modelling, 35(7), 3473–3483. DOI: 10.1016/j.apm.2011.01.008

    Article  Google Scholar 

  • Haas A, Esch T, Fahl E, Kreuter P, Pischinger F (1991). Optimized design of the lubrication system of modern combustion engines. International Fuels & Lubricants Meeting & Exposition, Toronto, Canada, SAE Technical Paper 912407. DOI: 10.4271/912407

    Google Scholar 

  • Hardenberg HO, Hase FW (1979). An empirical formula for computing the pressure rise delay of a fuel from its cetane number and from the relevant parameters of direct-injection diesel engines. International Fuels & Lubricants Meeting & Exposition, SAE Technical Paper 790493. DOI: 10.4271/790493

    Google Scholar 

  • Heywood JB (1988). Internal combustion engine fundamentals. Mcgraw-Hill, New York.

    Google Scholar 

  • Hiroyasu H, Kadota T, Arai M (1983). Development and use of a spray combustion modeling to predict diesel engine efficiency and pollutant emissions: Part 1 combustion modeling. Bulletin of JSME, 26(214), 569–575. DOI: 10.1299/jsme1958.26.569

    Article  Google Scholar 

  • Karlsson M, Ekholm K, Strandh F, Tunestal P, Johansson R (2010). Dynamic mapping of diesel engine through system identification. American Control Conference (ACC), Baltimore, USA, 3015–3020. DOI: 10.1109/ACC.2010.5531242

    Google Scholar 

  • Lakshminarayanan PA, Nayak N, Dingare SV, Dani AD (2002). Predicting hydrocarbon emissions from direct injection diesel engines. Journal of Engineering for Gas Turbines Power, 124(3), 708–716. DOI:10.1115/1.1456091

    Article  Google Scholar 

  • Lino P, Maione B, Rizzo A (2007). Nonlinear modelling and control of a common rail injection system for diesel engines. Applied Mathematical Modelling, 31(9), 1770–1784. DOI: 10.1016/j.apm.2006.06.001.

    Article  Google Scholar 

  • Lipkea WH, DeJoode AD (1994). Direct injection diesel engine soot modeling: Formulation and results. International Fuels & Lubricants Meeting & Exposition, Detroit, USA, SAE Technical Paper 940670. DOI:10.4271/940670

    Google Scholar 

  • Mansouri SH, Bakhshan Y (2001). Studies of NO-x, CO, soot formation and oxidation from a direct injection stratified-charge engine using the k-epsilon turbulence model. Proc. Inst. Mech. Eng. Part J—Automob. Eng., 215, 95–104. DOI:10.1243/0954407011525485

    Article  Google Scholar 

  • Nohra C, Noura H, Younes R (2009). A linear approach with μ-analysis control adaptation for a complete-model diesel-engine diagnosis. Chinese Control and Decision Conference, Guilin, China, 5415–5420. DOI: 10.1109/CCDC.2009.5195158

    Google Scholar 

  • Omran R, Younes R, Champoussin JC (2008). Neural networks for real-time nonlinear control of a variable geometry turbocharged diesel engine. International Journal of Robust Nonlinear Control, 18(2), 1209–1229. DOI: 10.1002/rnc.1264

    Article  MATH  Google Scholar 

  • Omran R, Younes R, Champoussin JC (2009). Optimal control of a variable geometry turbocharged diesel engine using neural networks: Applications on the ETC test cycle. IEEE Transactions on Control Systems Technology, 17(2), 380–393. DOI: 10.1109/TCST.2008.2001049

    Article  Google Scholar 

  • Paradis I, Wagner JR, Marotta EE (2002). Thermal periodic contact of exhaust valves. Journal of Thermophysics and Heat Transfer, 16(3), 356–365. DOI: 10.2514/2.6712

    Article  Google Scholar 

  • Roth P, Von Gersum S, Takeno T (1993). High temperature oxidation of soot particles by O, OH, and NO. In: Takeno T (ed). Turbulence and Molecular Processes in Combustion. Elsevier, Amsterdam, 149. DOI:10.1016/B978-0-444-89757-2.50016-9

    Chapter  Google Scholar 

  • Sakhrieh A, Abu-Nada E, Al-Hinti I, Al-Ghandoor A, Akash B (2010). Computational thermodynamic analysis of compression ignition engine. International Communications in Heat and Mass Transfer, 37(3), 299–303. DOI: 10.1016/j.icheatmasstransfer.2009.11.002

    Article  Google Scholar 

  • Salah MH, Mitchell TH, Wagner JR, Dawson DM (2010). A smart multiple-loop automotive cooling system—Model, control, and experimental study. IEEE/ASME Transactions on Mechatronics, 15(1), 117–124. DOI: 10.1109/TMECH.2009.2019723

    Article  Google Scholar 

  • Stone R (1999). Introduction to internal combustion engines. 3rd ed. MacMillian, New York

    Google Scholar 

  • Stumpp G, Ricco M (1996). Common rail—An attractive fuel injection system for passenger car DI diesel engines. International Fuels & Lubricants Meeting & Exposition, Detroit, USA, SAE Technical Paper 960870. DOI: 10.4271/960870

    Google Scholar 

  • Tan PQ, Hu ZY, Deng KY, Lu JX, Lou DM, Wan G (2007). Particulate matter emission modelling based on soot and SOF from direct injection diesel engines. Energy Conversion and Management, 48(2), 510–518. DOI: 10.1016/j.enconman.2006.06.012

    Article  Google Scholar 

  • Wiebe I (1956). Halbempirische formel fur die verbrennungs-geschwindigkeit. Verlag der Akademie der Wissenschaften der UdsSR, Moscow.

    Google Scholar 

  • Woschni G (1967). A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. International Fuels & Lubricants Meeting & Exposition, SAE Technical Paper 670931. DOI: 10.4271/670931

    Google Scholar 

  • Yoo IK, Simpson K, Bell M, Majkowski S (2000). An engine coolant temperature model and application for cooling system diagnosis. International Fuels & Lubricants Meeting & Exposition, Detroit, USA, SAE Technical Paper 2000-01-0939. DOI: 10.4271/2000-01-0939

    Google Scholar 

  • Younes R (1993). Elaboration d’un modèle de connaissance du moteur diésel avec turbocompresseur à géométrie variable en vue de l’optimisation de ses emissions. Ingénieur en Mécanique Générale de l’Ecole Polytechnique d’Alger.

    Google Scholar 

  • Zito G, Landau ID (2005). Narmax model identification of a variable geometry turbocharged diesel engine. Proceedings of the 2005 American Control Conference, Portland, USA, 1021–1026. DOI: 10.1109/ACC.2005.1470094

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Moussa Nahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nahim, H.M., Younes, R., Nohra, C. et al. Complete modeling for systems of a marine diesel engine. J. Marine. Sci. Appl. 14, 93–104 (2015). https://doi.org/10.1007/s11804-015-1285-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11804-015-1285-y

Keywords

Navigation