Skip to main content
Log in

Model tests on XCC-piled embankment under dynamic train load of high-speed railways

  • Technical Paper
  • Published:
Earthquake Engineering and Engineering Vibration Aims and scope Submit manuscript

Abstract

Piled embankments, which offer many advantages, are increasingly popular in construction of high-speed railways in China. Although the performance of piled embankment under static loading is well-known, the behavior under the dynamic train load of a high-speed railway is not yet understood. In light of this, a heavily instrumented piled embankment model was set up, and a model test was carried out, in which a servo-hydraulic actuator outputting M-shaped waves was adopted to simulate the process of a running train. Earth pressure, settlement, strain in the geogrid and pile and excess pore water pressure were measured. The results show that the soil arching height under the dynamic train load of a high-speed railway is shorter than under static loading. The growth trend for accumulated settlement slowed down after long-term vibration although there was still a tendency for it to increase. Accumulated geogrid strain has an increasing tendency after long-term vibration. The closer the embankment edge, the greater the geogrid strain over the subsoil. Strains in the pile were smaller under dynamic train loads, and their distribution was different from that under static loading. At the same elevation, excess pore water pressure under the track slab was greater than that under the embankment shoulder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al Shaer A, Duhamel D, Sab K, Foret G and Schmitt L (2008), “Experimental Settlement and Dynamic Behavior of a Portion of Ballasted Railway Track under High Speed Trains,” Journal of Sound and Vibration, 316(1): 211–233.

    Article  Google Scholar 

  • Aoki H, Nishioka H, Tateyama M, Yazaki S and Shinoda M (2006), “Field Test of Embankment Constructed by Column-Net Method,” Proceedings of the 8th International Conference on Geosynthetics (8ICG), Vols 1–4. Yokohama, Japan, 1011–1014.

    Google Scholar 

  • Ariyarathne P and Liyanapathirana DS (2015), “Review of Existing Design Methods for Geosynthetic-Reinforced Pile-supported Embankments,” Soils and Foundations, 55(1): 17–34.

    Article  Google Scholar 

  • Briançon L and Simon B (2012), “Performance of Pile-supported Embankment over Soft Soil: Full-Scale Experiment,” Journal of Geotechnical and Geoenvironmental Engineering, 138(4): 551–561.

    Article  Google Scholar 

  • Chen RP, Chen YM, Han J and Xu ZZ (2008), “A Theoretical Solution for Pile-Supported Embankments on Soft Soils under One-Dimensional Compression,” Canadian Geotechnical Journal, 45(5): 611–623.

    Article  Google Scholar 

  • Chen RP, Wang YW, Ye XW, Bian XC and Dong XP (2016), “Tensile Force of Geogrids Embedded in Pile-Supported Reinforced Embankment: A Full-Scale Experimental Study,” Geotextiles and Geomembranes, 44(2): 157–169.

    Article  Google Scholar 

  • Chen RP, Xu ZZ, Chen YM, Ling DS and Zhu B (2010), “Field Tests on Pile-Supported Embankments over Soft Ground,” Journal of Geotechnical and Geoenvironmental Engineering, 136(6): 777–785.

    Article  Google Scholar 

  • Chen YM, Cao WP and Chen RP (2008), “An Experimental Investigation of Soil Arching within Basal Reinforced and Unreinforced Piled Embankments,” Geotextiles and Geomembranes, 26(2): 164–174.

    Article  Google Scholar 

  • Ding XM, Liu HL, Chu J and Cheng K (2015), “Time-Domain Solution for Transient Dynamic Response of a Large-Diameter Thin-Walled Pipe Pile,” Earthquake Engineering and Engineering Vibration, 14(2): 239–251.

    Article  Google Scholar 

  • Fu J, Liang JW and Qin L (2016), “Dynamic Soil-tunnel Interaction in Layered Half-Space for Incident Plane SH Waves,” Earthquake Engineering and Engineering Vibration, 15(4): 715–727.

    Article  Google Scholar 

  • Gartung E, Verspohl J, Alexiew D and Bergmair F (1996), “Geogrid Reinforced Railway Embankment on Piles-Monitoring,” Proceedings of the 1st European Geosynthetics Conference, Maastricht, Netherlands, 251–258.

    Google Scholar 

  • Girout R, Blanc M, Thorel L, Fagundes DF and Almeida MSS (2016), “Arching and Deformation in a Piled Embankment: Centrifuge Tests Compared to Analytical Calculations,” Journal of Geotechnical and Geoenvironmental Engineering, 142(12): 1–10.

    Article  Google Scholar 

  • Halvordson KA, Plaut RH and Filz GM (2010), “Analysis of Geosynthetic Reinforcement in Pile-Supported Embankments. Part II: 3. Cable-Net Model,” Geosynthetics International, 17(2): 68–76.

    Article  Google Scholar 

  • Han GX, Gong QM and Zhou SH (2015), “Soil Arching in a Piled Embankment under Dynamic Load,” International Journal of Geomechanics, 15(6): 1–7.

    Article  Google Scholar 

  • Han J and Gabr MA (2002), “Numerical Analysis of Geosynthetic-Reinforced and Pile-Supported Earth Platforms over Soft Soil,” Journal of Geotechnical and Geoenvironmental Engineering, 128(1): 44–53.

    Article  Google Scholar 

  • Heitz C, Lüking J and Kempfert HG (2008), “Geosynthetic Reinforced and Pile Supported Embankments under Static and Cyclic Loading,” Proceedings of the 4th European Geosynthetics Conference, Edinburgh, U.K., 1–5.

    Google Scholar 

  • Hewlett W and Randolph M (1988), “Analysis of Piled Embankments,” Ground Engineering, 25(6): 12–18.

    Google Scholar 

  • Hufenus R, Rueegger R, Banjac R, Mayor P, Springman SM and Bronnimann R (2006), “Full-Scale Field Tests on Geosynthetic Reinforced Unpaved Roads on Soft Subgrade,” Geotextiles and Geomembranes, 24(1): 21–37.

    Article  Google Scholar 

  • Jiang Hongguang, Bian Xuecheng, Xu Xiang, Chen Yunmin and Jiang Jianqun (2014), “Full-Scale Model Tests on Dynamic Performances of Ballastless High-Speed Railways under Moving Train Loads,” Chinese Journal of Geotechnical Engineering, 36(2): 354–362. (in Chinese)

    Google Scholar 

  • Jones BM, Plaut RH and Filz GM (2010), “Analysis of Geosynthetic Reinforcement in Pile-Supported Embankments. Part I: 3. Plate Model,” Geosynthetics International, 17(2): 59–67.

    Article  Google Scholar 

  • Kempfert H, Göbel C, Alexiew D and Heitz C (2004), “German Recommendations for Reinforced Embankments on Pile-Similar Elements,” Proceedings of the 3rd European geosynthetics conference, geotechnical engineering with geosynthetics, Munich, Germany, 279–284.

    Google Scholar 

  • Lai HJ, Zheng JJ, Zhang J, Zhang RJ and Cui L (2014), “DEM Analysis of “Soil”-Arching within Geogrid-Reinforced and Unreinforced Pile-Supported Embankments,” Computers and Geotechnics, 61: 13–23.

    Article  Google Scholar 

  • Le Hello B and Villard P (2009), “Embankments Reinforced by Piles and Geosynthetics—Numerical and Experimental Studies Dealing with the Transfer of Load on the Soil Embankment,” Engineering Geology, 106(1): 78–91.

    Article  Google Scholar 

  • Liu HL, Ng CWW and Fei K (2007), “Performance of a Geogrid-Reinforced and Pile-Supported Highway Embankment over Soft Clay: Case Study,” Journal of Geotechnical and Geoenvironmental Engineering, 133(12): 1483–1493.

    Article  Google Scholar 

  • Liu HL, Zhou H and Kong GQ (2014), “XCC Pile Installation Effect in Soft Soil Ground: A Simplified Analytical Model,” Computers and Geotechnics, 62: 268–282.

    Article  Google Scholar 

  • Love J and Milligan G (2003), “Design Methods for Basally Reinforced Pile-Supported Embankments over Soft Ground,” Ground Engineering, 36(3): 39–43.

    Google Scholar 

  • Low B, Tang S and Choa V (1994), “Arching in Piled Embankments,” Journal of Geotechnical Engineering, 120(11): 1917–1938.

    Article  Google Scholar 

  • Lv YR, Liu HL, Ng CW, Ding XM and Gunawan A (2014), “Three-Dimensional Numerical Analysis of the Stress Transfer Mechanism of XCC Piled Raft Foundation,” Computers and Geotechnics, 55: 365–377.

    Article  Google Scholar 

  • Plaut RH and Filz GM (2010), “Analysis of Geosynthetic Reinforcement in Pile-supported Embankments. Part III: Axisymmetric Model,” Geosynthetics International, 17(2): 77–85.

    Article  Google Scholar 

  • German Geotechnical Society (2010), Recommendations for Design and Analysis of Earth Structures Using Geosynthetic Reinforcements-EBGEO, ISBN 978-3-433-02983-1 and digital in English ISBN 978-3-433-60093-1 Wilhelm Ernst & Sohn, Berlin, Germany.

    Google Scholar 

  • Rui R, van Tol F, Xia XL, van Eekelen S, Hu G and Xia YY (2016), “Evolution of Soil Arching; 2 DEM Simulations,” Computers and Geotechnics, 73: 199–209.

    Article  Google Scholar 

  • Terzaghi K (1943), Theoretical Soil Mechanics, New York: John Wiley and Sons.

    Book  Google Scholar 

  • Van Eekelen SJ, Bezuijen A, Lodder H and Van Tol A (2012a), “Model Experiments on Piled Embankments. Part I,” Geotextiles and Geomembranes, 32: 69–81.

    Article  Google Scholar 

  • Van Eekelen SJ, Bezuijen A, Lodder H and Van Tol A (2012b), “Model Experiments on Piled Embankments. Part II,” Geotextiles and Geomembranes, 32: 82–94.

    Article  Google Scholar 

  • Van Eekelen SJM, Bezuijen A and van Tol AF (2013), “An Analytical Model for Arching in Piled Embankments,” Geotextiles and Geomembranes, 39: 78–102.

    Article  Google Scholar 

  • Van Eekelen SJM, Bezuijen A and van Tol AF (2015), “Validation of Analytical Models for the Design of Basal Reinforced Piled Embankments,” Geotextiles and Geomembranes, 43(1): 56–81.

    Article  Google Scholar 

  • Wachman GS, Biolzi L and Labuz JF (2010), “Structural Behavior of a Pile-Supported Embankment,” Journal of Geotechnical and Geoenvironmental Engineering, 136(1): 26–34.

    Article  Google Scholar 

  • Wu Jun, Liao Shaoming and Huo Xiaobo, (2015), “Change of Hydraulic Conductivity of Filter Cake Caused by Train Vibration Load of a Running Subway,” Chinese Journal of Geotechnical Engineering, 37(6): 1093–1104. (in Chinese)

    Google Scholar 

  • Xiao Hong, Jiang Guanlu and Wei Yongxing (2010), “Dynamic Test Analysis on Ballastless-Track Column-Net Structure Subgrade of the Suining-Chongqing Railway Line,” Journal of the China Railway Society, 32(1): 79–84. (in Chinese)

    Google Scholar 

  • Xie Dingyi (2011), Soil Dynamics, Beijing: Higher Education Press. (in Chinese)

    Google Scholar 

  • Xu Jin (2012), “Research on Model Test System of High Speed Railway Subgrade and Dynamics Analysis,” ph.D. Dissertation, Central South University, Changsha. (in Chinese)

    Google Scholar 

  • Zhang CL, Jiang GL, Liu XF and Buzzi O (2016), “Arching in Geogrid-Reinforced Pile-Supported Embankments over Silty Clay of Medium Compressibility: Field Data and Analytical Solution,” Computers and Geotechnics, 77: 11–25.

    Article  Google Scholar 

  • Zheng JJ, Chen BG, Lu YE, Abusharar SW and Yin JH (2009), “The Performance of an Embankment on Soft Ground Reinforced with Geosynthetics and Pile Walls,” Geosynthetics International, 16(3): 173–182.

    Article  Google Scholar 

  • Zhuang Y, Ellis E and Yu HS (2012), “Three-Dimensional Finite-Element Analysis of Arching in a Piled Embankment,” Geotechnique, 62(12): 1127–1131.

    Article  Google Scholar 

  • Zhuang Y and Li SB (2015), “Three-Dimensional Finite Element Analysis of Arching in a Piled Embankment under Traffic Loading,” Arabian Journal of Geosciences, 8(10): 7751–7762.

    Article  Google Scholar 

Download references

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (Nos. 51622803, 51378177 and 51420105013) and the 111 Project (Grant NO. B13024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanlong Liu.

Additional information

Supported by: National Natural Science Foundation of China under Grant Nos. 51622803, 51378177 and 51420105013, and the 111 Project under Grant No. B13024

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, T., Liu, H., Ding, X. et al. Model tests on XCC-piled embankment under dynamic train load of high-speed railways. Earthq. Eng. Eng. Vib. 17, 581–594 (2018). https://doi.org/10.1007/s11803-018-0464-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11803-018-0464-7

Keywords

Navigation