Skip to main content
Log in

Dominant pulse simulation of near fault ground motions

  • Technical Paper
  • Published:
Earthquake Engineering and Engineering Vibration Aims and scope Submit manuscript

Abstract

In this study, a new mathematical model is developed composed of two parts, including harmonic and polynomial expressions for simulating the dominant velocity pulse of near fault ground motions. Based on a proposed velocity function, the corresponding expressions for the ground acceleration and displacement time histories are also derived. The proposed model is then fitted using some selected pulse-like near fault ground motions in the Next Generation Attenuation (NGA) project library. The new model is not only simple in form but also simulates the long-period portion of actual velocity near fault records with a high level of precision. It is shown that the proposed model-based elastic response spectra are compatible with the near fault records in the neighborhood of the prevailing frequency of the pulse. The results indicate that the proposed model adequately simulates the components of the time histories. Finally, the energy of the proposed pulse was compared with the energy of the actual record to confirm the compatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamson NA (2000), “Effects of Rupture Directivity in Probabilistic Seismic Hazard Analysis,” Proceedings of the 6th International Conf. on Seismic Zonation, Earthquake Engineering Research Institute, Palm Springs.

    Google Scholar 

  • Alavi P and Krawinkler H (2001), “Effects of Nearfault Ground Motion on Building Structures,” CUREEKajima Joint Research Program Report, Richmond, California.

    Google Scholar 

  • Anderson JC, Bertero VV and Bertero RD (1999), “Performance Improvement of Long Period Building Structures Subjected to Severe Pulse-type Ground Motions,” PEER Report 1999/09, University of California at Berkeley, California.

    Google Scholar 

  • Baker J (2007), “Quantitative Classification of Nearfault Ground Motions Using Wavelet Analysis,” Bulletin of the Seismological Society of America, 97(5): 1486–1501.

    Article  Google Scholar 

  • Baker J (2008), “Identification of Near-fault Velocity Pulses and Prediction of Resulting Response Spectra,” Proceedings of the Geotechnical Earthquake Engineering and Structural Dynamics IV, Sacramento, CA.

    Google Scholar 

  • Chopra AK and Chintanapakdee C (1998), “Accuracy of Response Spectrum Estimates of Structural Response to Near-field Earthquake Ground Motions: Preliminary Results,” Proceedings of the Structural Engineers World Congress, San Francisco, California.

    Google Scholar 

  • Chopra AK and Chintanapakdee C (2001), “Comparing Response of SDOF Systems to Near-fault and Far-fault Earthquake Motions in the Context of Spectral Regions,” Earthquake Eng. Struct. Dyn., 30: 1769–1789.

    Article  Google Scholar 

  • Cuesta I and Aschheim MA (2001), “Isoductile Strengths and Strength Reduction Factors of Elasto-plastic SDOF Systems Subjected to Simple Waveforms,” Earthquake Eng. Struct. Dyn., 30:1043–1059.

    Article  Google Scholar 

  • Dickinson BW and Gavin HP (2011), “Parametric Statistical Generalization of Uniform-hazard Earthquake Ground Motions,” J. Struct. Eng., 137(3): 410–423.

    Article  Google Scholar 

  • Fu Q and Menun Ch (2004), “Seismic Environment Based Simulation of Near Fault Ground Motion,” Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada.

    Google Scholar 

  • Hall JF, Heaton TH, Halling MW and Wald DJ (1995), “Near Source Ground Motion and Its Effects on Flexible Buildings,” Earthquake Spectra, 11: 569–606.

    Article  Google Scholar 

  • Hall JF and Ryan KL (2000), “Isolated Buildings and the 1997 UBC Near-source Factors,” Earthquake Spectra, 16: 393–411.

    Article  Google Scholar 

  • Halldórsson B, Ólafsson S and Sigbjörnsson R (2007), “A Fast and Efficient Simulation of the Far-fault and Near-fault Earthquake Ground Motions Associated with the June 17 and 21, 2000, Earthquakes in South Iceland,” Journal of Earthquake Engineering, 11(3): 343–370.

    Article  Google Scholar 

  • Iwan WD (1997), “Drift Spectrum: Measure of Demand for Earthquake Ground Motions,” J. Struct. Eng., ASCE, 123: 397–404.

    Article  Google Scholar 

  • Jangid RS and Kelly JM (2001), “Base Isolation for Near-fault Motions,” Earthquake Eng. Struct. Dyn., 30: 691–707.

    Article  Google Scholar 

  • Kasalanati A and Constantinou MC (1999), “Experimental Study of Bridge Elastomeric and other Isolation and Energy Dissipation Systems with Emphasis on Uplift Prevention and High Velocity Nearsource Seismic Excitation,” Technical Report MCEER-99-0004, University at Buffalo, State University of New York, Buffalo, NY.

    Google Scholar 

  • Li XL and Zhu X (2004), “Study on Equivalent Velocity Pulse of Near Fault Ground Motions,” Acta Seismologica Sinica, 17: 697–706.

    Article  Google Scholar 

  • Liao WI, Loh CH and Wan S (2001), “Earthquake Responses of RC Moment Frames Subjected to Nearfault Ground Motions,” Struct. Design Tall Buildings, 10: 219–229.

    Article  Google Scholar 

  • Liu T, Luan Yu and Zhong W (2012), “A Numerical Approach for Modeling Near-fault Ground Motion and Its Application in the 1994 Northridge Earthquake,” Soil Dynamics and Earthquake Engineering, 34(1): 52–61.

    Article  Google Scholar 

  • MacRae GA, Morrow DV and Roeder CW (2001), “Near-fault Ground Motion Effects on Simple Structures,” J. Struct. Eng., ASCE, 127: 996–1004.

    Article  Google Scholar 

  • Makris N (1997), “Rigidity-plasticity-viscosity: Can Electro Rheological Dampers Protect Base-isolated Structures from Near-source Ground Motions” Earthquake Eng. Struct. Dyn., 26: 571–591.

    Article  Google Scholar 

  • Makris N and Black CJ (2004), “Evaluation of Peak Ground Velocity as a “Good” Intensity Measure for Near-source Ground Motions,” J. Eng. Mech., 130(9): 1032–1045.

    Article  Google Scholar 

  • Makris N and Chang SP (2000a), “Response of Damped Oscillators to Cycloid Pulses,” J. Eng. Mech., ASCE, 126: 123–131.

    Article  Google Scholar 

  • Makris N and Chang SP (2000b), “Effect of Viscous, Viscoplastic, and Friction Damping on the Response of Seismic Isolated Structures,” Earthquake Eng. Struct. Dyn., 29: 85–107.

    Article  Google Scholar 

  • Malhotra PK (1999), “Response of Buildings to Near-field Pulse-like Ground Motions,” Earthquake Eng. Struct. Dyn., 28: 1309–1326.

    Article  Google Scholar 

  • Mavroeidis GP and Papageorgiou AS (2003), “A Mathematical Representation of Near-fault Ground Motions,” Bulletin of the Seismological Society of America, 93(3): 1099–1131.

    Article  Google Scholar 

  • Mcfadden PD, Cook JG and Forster LM (1999), “Decomposition of Gear Vibration Signals by the Generalised S Transform,” Mechanical Systems and Signal Processing, 13(5): 691–707.

    Article  Google Scholar 

  • Mollaioli F and Bosi A (2012), “Wavelet Analysis for the Characterization of Forward-directivity Pulse-like Ground Motions on Energy Basis,” MECCANICA, 47(1): 203–219.

    Article  Google Scholar 

  • Mylonakis G and Reinhorn AM (2001), “Yielding Oscillator under Triangular Ground Acceleration Pulse,” J. Earthquake Eng., 5: 225–251.

    Google Scholar 

  • Rao PB and Jangid RS (2001), “Performance of Sliding Systems under Near-fault Motions,” Nuclear Eng. Design, 203: 259–272.

    Article  Google Scholar 

  • Sasani M and Bertero VV (2000), “Importance of Severe Pulse-type Ground Motions in Performancebased Engineering: Historical and Critical Review,” Proceedings of the Twelfth World Conf. on Earthquake Engineering (12WCEE), Auckland, New Zealand.

    Google Scholar 

  • Somerville PG, Smith NF, Graves RW and Abrahamson NA (1997), “Modification of Empirical Strong Ground Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity,” Seis Res Let, 68(1): 199–222.

    Article  Google Scholar 

  • Tian YJ, Yang QS and Lu MQ (2007), “Simulation Method of Near-fault Pulse-type Ground Motion,” Acta Seismologica Sinica, 20(1): 80–87.

    Article  Google Scholar 

  • Todorovska MI, Meidani H and Trifunac MD (2009), “Wavelet Approximation of Earthquake Strong Ground Motion-goodness of Fit for a Database in Terms of Predicting Nonlinear Structural Response,” Soil Dynamics and Earthquake Engineering, 29(4): 742–751.

    Article  Google Scholar 

  • Trifunac MD (2008), “Energy of Strong Motion at Earthquake Source,” Soil Dynamics and Earthquake Engineering, 28(1): 1–6.

    Article  Google Scholar 

  • Xie L, Xu L and Rodriguez-Marek A (2005), “Representation of Near-fault Pulse-type Ground Motions,” Earthquake Engineering and Engineering Vibration, 4(2): 191–199.

    Article  Google Scholar 

  • Yaghmaei-Sabegh S (2010), “Detection of Pulselike Ground Motions Based on Continues Wavelet Transform,” Journal of Seismology, 14(4): 715–726.

    Article  Google Scholar 

  • Zhang Y and Iwan WD (2002a), “Active Interaction Control of Tall Buildings Subjected to Near-field Ground Motions,” J. Struct. Eng., ASCE, 128: 69–79.

    Article  Google Scholar 

  • Zhang Y and Iwan WD (2002b), “Protecting Baseisolated Structures from Near-field Ground Motion by Tuned Interaction Damper,” J. Eng. Mech., ASCE, 128: 287–295.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Naderpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoseini Vaez, S.R., Sharbatdar, M.K., Ghodrati Amiri, G. et al. Dominant pulse simulation of near fault ground motions. Earthq. Eng. Eng. Vib. 12, 267–278 (2013). https://doi.org/10.1007/s11803-013-0170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11803-013-0170-4

Keywords

Navigation