Skip to main content
Log in

Enhanced Data Transmission Rate of XCTD Profiler Based on OFDM

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

An expendable conductivity-temperature-depth profiler (XCTD) is one of the most important instruments used to obtain hydrological data, such as temperature and conductivity, and detect ocean depth in a large area. However, the XCTD channel provides poor time-varying performance, narrowband, and low signal-to-noise ratio (SNR), which severely restricts the data transmission rate. In contrast to conventional single-carrier modulation techniques, such as amplitude-shift keying and differential phase-shift keying, this article provides a new method, based on orthogonal frequency division multiplexing (OFDM) to enhance the data transmission rate of deep-sea abandoned profilers. We apply the OFDM to enhance the SNR of the XCTD, which is achieved by reducing the data transmission rate of each sub-channel. Moreover, the bandwidth utilization may be improved by increasing the number of subcarriers in a given bandwidth, which enhances the data transmission rate. Based on analysis of the XCTD channel model, OFDM with different parameters such as constellation mapping, number of subcarriers, subcarrier spacing, signal period and cyclic prefix are achieved. To verify the effectiveness of the OFDM, this study investigates the influence of different parameters on the data transmission rate at different noise levels, i.e., -20 dB and -40 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, S., and Darren, W., 2000. XBT/XCTD Standard test procedures for reliability and performance tests of expendable probes at sea. 3rd Session of JCOMM Ship-of-Opportunity Implementation Panel. La Jolla, California, 1–8.

    Google Scholar 

  • Baron, G., and Mendoza, D., 1984. A System for calibration of expendable conductivity, temperature, and depth (XCTD) probes. IEEE Oceans Conference. Washington, D. C., 210–213, DOI: https://doi.org/10.1109/OCEANS.1984.1152331.

    Google Scholar 

  • Chen, H. S., van den Boom, H. P. A., and Koonen, A. M. J., 2010. OFDM MMF optical communication transmission system based on mode group division multiplexing. Proceedings 15th Annual Symposium of the IEEE Photonics Benelux Chapter. Delft, the Netherlands, 97–100.

    Google Scholar 

  • Chen, L., Jia, Z. C., Li, Y. J., Zhang, L. Y., and Zhang, Y., 2009. Development of data transmission system of expendable CTD profiling system. Ocean Technology, 28 (3): 26–29 (in Chinese with English abstract).

    Google Scholar 

  • Chuang, J., and Sollenberger, N., 1999. Wideband wireless data access based on OFDM and dynamic packet assignment. Wireless Communications and Networking Conference. New Orleans, LA, 757–761, DOI: https://doi.org/10.1109/WCNC.1999.796749.

    Google Scholar 

  • Jia, Z. C., Yu, X. S., Ni, J. J., Li, Y. J., and Chen, L., 2010. Design and realization of data transmission circuit for XCTD profiler. Ocean Technology, 29 (2): 1–4 (in Chinese with English abstract).

    Google Scholar 

  • Johnson, G. C., 1995. Revised XCTD fall-rate equation coefficients from CTD data. Journal of Atmospheric and Oceanic Technology, 12 (6): 1367–1373.

    Article  Google Scholar 

  • Kizu, S., Onishi, H., Suga, T., Hanawa, K., Watanabe, T., and Iwamiya, H., 2008. Evaluation of the fall rates of the present and developmental XCTDs. Deep Sea Research Part I: Oceanographic Research Papers, 55 (4): 571–586, DOI: https://doi.org/10.1016/j.dsr.2007.12.011.

    Article  Google Scholar 

  • Li, Q. W., Zheng, Y., Tian, L., Song, G. M., Shang, Y. S., Jin, X. Y., and Wang, X. R., 2017. Analysis of Signal error rate of time-varying channel effects on ASK band transmission of deep-sea abandoned profiler measuring instrument. International Conference on Communication and Electronic Information Engineering. Guangzhou, 540–546, DOI: 10.299/ceie-16.2017.69.

    Google Scholar 

  • Miyoshi, K., 2001. Preliminary design of OFDM and CDMA acoustic communication system. IEEE Oceans Conference. Honolulu, 2216–2219, DOI: https://doi.org/10.1109/OCEANS.2001.968342.

    Google Scholar 

  • Nee, R. V., and Prasad, R., 2000. OFDM for Wireless Multimedia Communications. Artech House Publishers, Norwood, 1–27

    Google Scholar 

  • Qaddour, J., Leonard, D., Matalgah, M. M., and Guizani, M., 2003. Beyond 3G: Uplink capacity estimation for wireless spread-spectrum orthogonal frequency division multiplexing (SS-OFDM). Global Telecommunications Conference. San Francisco, 4139–4141, DOI: https://doi.org/10.1109/GLOCOM.2003.1259006.

    Google Scholar 

  • Stuber, G. L., Barry, J. R., Mclaughlin, S. W., Li, Y., Ingram, M. A., and Pratt, T. G., 2004. Broadband MIMO-OFDM wireless communications. Proceedings of the IEEE, 92 (2): 271–294, DOI: https://doi.org/10.1109/jproc.2003.821912.

    Article  Google Scholar 

  • Uehara, H., Kizu, S., Hanawa, K., Yoshikawa, Y., and Roemmich, D., 2008. Estimation of heat and freshwater transports in the North Pacific using high-resolution expendable bathythermograph data. Journal of Geophysical Research Atmospheres, 113 (2): 503–504, DOI: https://doi.org/10.1029/2007JC004165.

    Google Scholar 

  • Wijffels, S. E., Willis, J., Domingues, C. M., Barker, P. M., White, N. J., Gronell, A., Ridgway, K., and Church, J. A., 2008. Changing expendable bathythermograph fall rates and their impact on estimates of thermosteric sea level rise. Journal of Climate, 21 (21): 5657–5672, DOI: https://doi.org/10.1175/2008jcli2290.1.

    Article  Google Scholar 

  • Zhao, X., Zheng, Y., Jing, L. I., Wang, J. H., Li, H. Z., and Liu, N., 2014. Effects of distributed capacitance among XCTD profiler transmission wire on equivalent inductance. Instrument Technique and Sensor, 43 (7): 54–57 (in Chinese with English abstract).

    Google Scholar 

  • Zheng, Y., Fu, X. H., Zhao, X., Gao, Y., Fang, J., Wang, J. H., Li, H. Z., and Liu, N., 2014. The method of improving the phase stability of time-varying channels of vessel-mounted XCTD profilers. Journal of Ocean Technology, 33 (3): 12–17 (in Chinese with English abstract).

    Google Scholar 

  • Zheng, Y., Gao, Y., Fang, J., Song, G. M., Shang, Y. S., and Li, H. Z., 2015. The research methods of a time-varying channel model of the XCTD profiler. Journal of Geophysics and Engineering, 12 (5): 849–856, DOI: https://doi.org/10.1088/1742-2132/12/5/849.

    Article  Google Scholar 

  • Zheng, Y., Song, G. M., Shang, Y. S., Jin, X. Y., Wang, X. R., Tian, L., and Liu, J. W., 2017. Analysis of the DPSK transmission carrier frequency of time-varying channel model of XCTD profiler. International Conference on Communication and Electronic Information Engineering. Guangzhou, 534–539.

    Google Scholar 

  • Zheng, Y., Song, G. M., Shang, Y. S., Li. H. Z., Zhang, X. W., Tian, L., and Li, Q. W., 2018. Research on improving transmission reliability of deep sea disposal profiler by RS-CC concatenated code. Periodical of Ocean University of China, 48 (9): 140–146 (in Chinese with English abstract).

    Google Scholar 

  • Zheng, Y., Zhao, X., Li, J., Wang, J. H., Li, H. Z., and Liu, N., 2013. Dynamic analysis of XCTD profiler signal transmission. Ocean Technology, 32 (4): 11–14 (in Chinese with English abstract).

    Google Scholar 

  • Zheng, Y., Zhao, X., Li, J., Fu, X. H., Wang, J. H., Li, H. Z., and Liu, N., 2014. Analysis of time-varying channel effects on transmission performance of deep-sea abandoned measuring instrument. Acta Physica Sinica, 63 (4): 69–76, DOI: https://doi.org/10.7498/aps.63.040507.

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Key Research and Development Program of China (No. 2016 YFC1400400), and the Marine Economic Innovation and Development Demonstration Project in Binhai New Area (No. 1723434C4114194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhang, S., Qin, X. et al. Enhanced Data Transmission Rate of XCTD Profiler Based on OFDM. J. Ocean Univ. China 18, 1079–1085 (2019). https://doi.org/10.1007/s11802-019-3919-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-019-3919-1

Key words

Navigation