Skip to main content
Log in

Characterization of SOX3 Gene in an Ovoviviparous Teleost, Black Rockfish (Sebastes schlegeli)

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Evolutionary evidence suggests that Sox3, a member of the high-mobility-group (HMG) family of transcription factors, is an ancestral precursor of Sry and is involved in sex determination similar to Sry. However, there is limited information regarding the SOX3 gene of the black rockfish (Sebastes schlegeli). In this study, we first isolated SOX3 gene from the gonads of S. schlegeli by homology cloning. The full-length of S. schlegeli SOX3 (SsSOX3) cDNA was 1386 bp, comprising a 906-bp open reading frame, which encodes a peptide showing 93.6% and 93.9% homology with the Sox3 proteins of Epinephelus coioides and Oryzias latipe, respectively. Comparison of the cDNA sequence of the SsSOX3 gene with the corresponding genomic DNA fragment revealed that the SsSOX3 gene consists of a single exon. Phylogenetic analysis demonstrated the evolutionary relationship of SsSOX3 with other known SOXB1 genes in fish and tetrapods. The promoter region contains binding sites of several transcriptional factors that might participate in the regulation of SsSOX3 expression. Quantitative real-time PCR analysis indicated that SsSOX3 was expressed in all the investigated larval developmental stages from 1 to 35 days after birth and the level of expression gradually decreased as the development proceeded. SsSOX3 exhibited sexually dimorphic expression in adult gonads, with high expression in the ovary but low expression in the testis. In situ hybridization revealed that SsSOX3 was strongly expressed in oocytes and follicular cells of ovaries but slightly expressed in germ cells of testicular tissues. Therefore, this study suggests that SsSOX3 plays an important role in oogenesis and ovary differentiation in S. schlegeli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergstrom, D. E., Young, M., Albrecht, K. H., and Eicher, E. M., 2000. Related function of mouse SOX3, SOX9, and SRY HMG domains assayed by male sex determination. Genesis, 28 (3–4): 111–124.

    Article  Google Scholar 

  • Bowles, J., Schepers, G., and Koopman, P., 2000. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Developmental Biology, 227 (2): 239–255.

    Article  Google Scholar 

  • Cheah, P. S., and Thomas, P. Q., 2015. SOX3 expression in the glial system of the developing and adult mouse cerebellum. Springerplus, 4: 400.

    Article  Google Scholar 

  • Dee, C. T., Hirst, C. S., Shih, Y. H., Tripathi, V. B., Patient, R. K., and Scotting, P. J., 2008. Sox3 regulates both neural fate and differentiation in the zebrafish ectoderm. Developmental Biology, 320 (1): 289–301.

    Article  Google Scholar 

  • Feng, J. R., Liu, L. M., Jiang, H. B., Wang, M. J., and Du, R. B., 2014. Histological observation of germ cell development and discovery of spermatophores in ovoviviparous black rockfish (Sebastes schlegeli Hilgendorf) in reproductive season. Journal of Ocean University of China, 13 (5): 830–836.

    Article  Google Scholar 

  • Foster, J. W., and Graves, J. A., 1994. An SRY–related sequence on the marsupial X chromosome: Implications for the evolution of the mammalian testis–determining gene. Proceedings of the National Academy of Sciences of the United States of America, 91 (5): 1927–1931.

    Article  Google Scholar 

  • Gao, J., Li, P., Zhang, W., Wang, Z., Wang, X., and Zhang, Q., 2015. Molecular cloning, promoter analysis and expression profiles of the sox3 gene in Japanese flounder, Paralichthys olivaceus. International Journal of Molecular Sciences, 16 (11): 27931–27944.

    Article  Google Scholar 

  • Graves, J. A., 1998. Evolution of the mammalian Y chromosome and sex–determining genes. Journal of Experimental Zoology, 281 (5): 472–481.

    Article  Google Scholar 

  • Grujicic, N. K., Mojsin, M., Krstic, A., and Stevanovic, M., 2005. Functional characterization of the human SOX3 promoter: Identification of transcription factors implicated in basal promoter activity. Gene, 344: 287–297.

    Article  Google Scholar 

  • Jeng, S. R., Wu, G. C., Yueh, W. S., Kuo, S. F., Dufour, S., and Chang, C. F., 2017. Gonadal development and expression of sex–specific genes during sex differentiation in the Japanese eel. General and Comparative Endocrinology, DOI: 10.1016/j.ygcen.2017.07.031.

    Google Scholar 

  • Kobayashi, T., Kajiura–Kobayashi, H., Guan, G., and Nagahama, Y., 2008. Sexual dimorphic expression of DMRT1 and Sox9a during gonadal differentiation and hormone–induced sex reversal in the teleost fish Nile tilapia (Oreochromis niloticus). Developmental Dynamics, 237 (1): 297–306.

    Article  Google Scholar 

  • Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P., and Lovell–Badge, R., 1991. Male development of chromosomally female mice transgenic for Sry. Nature, 351 (6322): 117–121.

    Article  Google Scholar 

  • Koyano, S., Ito, M., Takamatsu, N., Takiguchi, S., and Shiba, T., 1997. The Xenopus Sox3 gene expressed in oocytes of early stages. Gene, 188 (1): 101–107.

    Article  Google Scholar 

  • Lee, K., Tan, J., Morris, M. B., Rizzoti, K., Hughes, J., Cheah, P. S., Felquer, F., Liu, X., Piltz, S., Lovell–Badge, R., and Thomas, P. Q., 2012. Congenital hydrocephalus and abnormal subcommissural organ development in Sox3 transgenic mice. PLoS One, 7 (1): e29041.

    Article  Google Scholar 

  • Ma, L., Wang, W., Liu, C., Yu, H., Wang, Z., Wang, X., Qi, J., and Zhang, Q., 2013. Selection of reference genes for reverse transcription quantitative real–time PCR normalization in black rockfish (Sebastes schlegeli). Marine Genomics, 11: 67–73.

    Article  Google Scholar 

  • Ma, L., Wang, W., Yang, X., Jiang, J., Song, H., Jiang, H., Zhang, Q., and Qi, J., 2014. Characterization of the Dmrt1 gene in the black rockfish Sebastes schlegeli revealed a remarkable sexdimorphic expression. Fish Physiology and Biochemistry, 40 (4): 1263–1274.

    Google Scholar 

  • Mojsin, M., and Stevanovic, M., 2009. PBX1 and MEIS1 upregulate SOX3 gene expression by direct interaction with a consensus binding site within the basal promoter region. Biochemical Journal, 425 (1): 107–116.

    Article  Google Scholar 

  • Navarro–Martín, L., Galay–Burgos, M., Sweeney, G., and Piferrer, F., 2009. Different sox17 transcripts during sex differentiation in sea bass, Dicentrarchus labrax. Molecular and Cellular Endocrinology, 299 (2): 240–251.

    Article  Google Scholar 

  • Omoto, N., Koya, Y., Chin, B., Yamashita, Y., Nakagawa, M., and Noda, T., 2009. Gonadal sex differentiation and effect of rearing temperature on sex ratio in black rockfish (Sebastes schlegeli). Ichthyological Research, 57 (2): 133–138.

    Article  Google Scholar 

  • Rajakumar, A., and Senthilkumaran, B., 2016. Sox3 binds to 11beta–hydroxysteroid dehydrogenase gene promoter suggesting transcriptional interaction in catfish. Journal of Steroid Biochemistry and Molecular Biology, 158: 90–103.

    Article  Google Scholar 

  • Raverot, G., Weiss, J., Park, S. Y., Hurley, L., and Jameson, J. L., 2005. Sox3 expression in undifferentiated spermatogonia is required for the progression of spermatogenesis. Developmental Biology, 283 (1): 215–225.

    Article  Google Scholar 

  • Rizzoti, K., Brunelli, S., Carmignac, D., Thomas, P. Q., Robinson, I. C., and Lovell–Badge, R., 2004. SOX3 is required during the formation of the hypothalamo–pituitary axis. Nature Genetics, 36 (3): 247–255.

    Article  Google Scholar 

  • Rodríguez–Marí, A., Yan, Y. L., BreMiller, R. A., Wilson, C., Canestro, C., and Postlethwait, J. H., 2005. Characterization and expression pattern of zebrafish anti–Mullerian hormone (amh) relative to sox9a, sox9b, and cyp19a1a during gonad development. Gene Expression Patterns, 5 (5): 655–667.

    Article  Google Scholar 

  • Saitou, N., and Nei, M., 1987. The neighbor–joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4 (4): 406–425.

    Google Scholar 

  • Sambrook, J., and Russell, D. W., 2016. Molecular Cloning: A Laboratory Manual. Huang, P. T., trans., Science Press, Beijing, 1661–1681 (in Chinese).

    Google Scholar 

  • Shi, D., Wen, H. S., and Yang, Y. P., 2011. The annual change of ovarian development in female Sebastes schlegeli. Periodical of Ocean University of China, 41 (9): 25–30 (in Chinese with English abstract).

    Google Scholar 

  • Shin, H. S., An, K. W., Park, M. S., Jeong, M. H., and Choi, C. Y., 2009. Quantitative mRNA expression of sox3 and DMRT1 during sex reversal, and expression profiles after GnRHa administration in black porgy, Acanthopagrus schlegeli. Comparative Biochemistry and Physiology. Part B: Biochemistry and Molecular Biology, 154 (1): 150–156.

    Article  Google Scholar 

  • Sinclair, A. H., Berta, P., Palmer, M. S., Hawkins, J. R., Griffiths, B. L., Smith, M. J., Foster, J. W., Frischauf, A. M., Lovell–Badge, R., and Goodfellow, P. N., 1990. A gene from the human sex–determining region encodes a protein with homology to a conserved DNA–binding motif. Nature, 346 (6281): 240–244.

    Article  Google Scholar 

  • Stevanovic, M., Lovell–Badge, R., Collignon, J., and Goodfellow, P. N., 1993. SOX3 is an X–linked gene related to SRY. Human Molecular Genetics, 2 (12): 2013–2018.

    Article  Google Scholar 

  • Takehana, Y., Matsuda, M., Myosho, T., Suster, M. L., Kawakami, K., Shin, I. T., Kohara, Y., Kuroki, Y., Toyoda, A., Fujiyama, A., Hamaguchi, S., Sakaizumi, M., and Naruse, K., 2014. Co–option of Sox3 as the male–determining factor on the Y chromosome in the fish Oryzias dancena. Nature Communications, 5: 4157.

    Article  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S., 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28 (10): 2731–2739.

    Article  Google Scholar 

  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G., 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25 (24): 4876–4882.

    Article  Google Scholar 

  • Uchikawa, M., Kamachi, Y., and Kondoh, H., 1999. Two distinct subgroups of Group B Sox genes for transcriptional activators and repressors: Their expression during embryonic organogenesis of the chicken. Mechanisms of Development, 84 (1–2): 103–120.

    Article  Google Scholar 

  • Wang, R., Cheng, H. H., Xia, L. X., Guo, Y. Q., Huang, X., and Zhou, R. J., 2003. Molecular cloning and expression of Sox17 in gonads during sex reversal in the rice field eel, a teleost fish with a characteristic of natural sex transformation. Biochemical and Biophysical Research Communications, 303 (2): 452–457.

    Article  Google Scholar 

  • Weiss, J., Meeks, J. J., Hurley, L., Raverot, G., Frassetto, A., and Jameson, J. L., 2003. Sox3 is required for gonadal function, but not sex determination, in males and females. Molecular and Cellular Biology, 23 (22): 8084–8091.

    Article  Google Scholar 

  • Wright, E. M., Snopek, B., and Koopman, P., 1993. Seven new members of the Sox gene family expressed during mouse development. Nucleic Acids Research, 21 (3): 744.

    Article  Google Scholar 

  • Wu, D. Y., and Yao, Z., 2005. Isolation and characterization of the murine Nanog gene promoter. Cell Research, 15 (5): 317–324.

    Article  Google Scholar 

  • Wu, X., Wang, Z., Jiang, J., Gao, J., Wang, J., Zhou, X., and Zhang, Q., 2014. Cloning, expression promoter analysis of vasa gene in Japanese flounder (Paralichthys olivaceus). Comparative Biochemistry and Physiology. Part B: Biochemistry and Molecular Biology, 167: 41–50.

    Article  Google Scholar 

  • Xia, X., Huo, W., Wan, R., Zhang, L., Xia, X., and Chang, Z., 2017. Molecular cloning and expression analysis of Sox3 during gonad and embryonic development in Misgurnus anguillicaudatus. International Journal of Developmental Biology, 61 (8–9): 565–570.

    Article  Google Scholar 

  • Yao, B., Zhou, L., and Gui, J. F., 2003. Studies on cDNA cloning and temporal and spatial expression of sox3 gene ingrouper Epinephelus coioides. High Technology Letters, 13 (5): 74–81 (in Chinese with English abstract).

    Google Scholar 

  • Yao, B., Zhou, L., Wang, Y., Xia, W., and Gui, J. F., 2007. Differential expression and dynamic changes of SOX3 during gametogenesis and sex reversal in protogynous hermaphroditic fish. Journal of Experimental Zoology. Part A: Ecological Genetics and Physiology, 307 (4): 207–219.

    Article  Google Scholar 

  • Zhang, L., Lin, D., Zhang, Y., Ma, G., and Zhang, W., 2008. A homologue of sox11 predominantly expressed in the ovary of the orange–spotted grouper Epinephelus coioides. Comparative Biochemistry and Physiology. Part B: Biochemistry and Molecular Biology, 149 (2): 345–353.

    Article  Google Scholar 

  • Zhou, Q., Shao, M., Qin, Z., Kyoung, H. K., and Zhang, Z., 2010. Cloning, characterization, and expression analysis of the DEADbox family genes, Fc–vasa and Fc–PL10a, in Chinese shrimp (Fenneropenaeus chinensis). Chinese Journal of Oceanology and Limnology, 28 (1): 37–45.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 31372511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Wang, W., Shang, R. et al. Characterization of SOX3 Gene in an Ovoviviparous Teleost, Black Rockfish (Sebastes schlegeli). J. Ocean Univ. China 18, 431–440 (2019). https://doi.org/10.1007/s11802-019-3803-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-019-3803-z

Key words

Navigation