Skip to main content
Log in

Numerical analysis of the flow field in a sloshing tank with a horizontal perforated plate

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Liquid sloshing is a type of free surface flow inside a partially filled water tank. Sloshing exerts a significant effect on the safety of liquid transport systems; in particular, it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank. Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions. In this study, a numerical model based on OpenFOAM (Open Source Field Operation and Manipulation), an open source computed fluid dynamic code, is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate. The numerical results of the free surface elevations are first verified using experimental data, and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples. The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies. This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biswal, K. C., Bhattacharyya, S. K., and Sinha, P. K., 2006. Nonlinear sloshing in partially liquid filled containers with baffles. International Journal for Numerical methods in Engineering, 68 (3): 317–337.

    Article  Google Scholar 

  • Faltinsen, O. M., and Timokha, A. N., 2001. An adaptive multimodal approach to nonlinear sloshing in a rectangular tank. Journal of Fluid Mechanics, 432: 167–200.

    Google Scholar 

  • Faltinsen, O. M., and Timokha, A. N., 2009. Sloshing. Cambridge University Press, New York, 126–127.

    Google Scholar 

  • Faltinsen, O. M., Firoozkoohi, R., and Timokha, A. N., 2011. Analytical modeling of liquid sloshing in a two-dimensional rectangular tank with a slat screen. Journal of Engineering Mathematics, 70 (1–3): 93–109.

    Article  Google Scholar 

  • Fediw, A., Isyumov, N., and Vickery, B., 1995. Performance of a tuned sloshing water damper. Journal of Wind Engineering and Industrial Aerodynamics, 57 (2): 237–247.

    Article  Google Scholar 

  • Firoozkoohi, R., Faltinsen, O. M., and Arslan, T., 2015. Investigation of finite water depth sloshing in a tank in presence of slat screens using model test and CFD. Proceedings of the Twenty-fifth (2015) International Ocean and Polar Engineering Conference, Hawaii, USA, 924–930.

    Google Scholar 

  • Firoozkoohi, R., Faltinsen, O. M., and Arslan, T., 2016. Investigation of finite water depth sloshing in a tank in the presence of slat screens using model test and CFD. International Society of Offshore and Polar Engineers, 26 (2): 146–153.

    Article  Google Scholar 

  • Garrido-Mendoza, C. A., Thiagarajan, K. P., Souto-Iglesias, A., Colagrossi, A., and Bouscasse, B., 2015. Computation of flow features and hydrodynamic coefficients around heave plates oscillating near a seabed. Journal of Fluids and Structures, 59: 406–431.

    Article  Google Scholar 

  • Godderidge, B., Turnock, S., Tan, M., and Earl, C., 2009. An investigation of multiphase CFD modelling of a lateral sloshing tank. Computers and Fluids, 38 (2): 183–193.

    Article  Google Scholar 

  • Hirt, C. W., and Nichols, B. D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39 (1): 201–225.

    Article  Google Scholar 

  • Jin, H., Liu, Y., and Li, H. J., 2014. Experimental study on sloshing in a tank with an inner horizontal perforated plate. Ocean Engineering, 82: 75–84.

    Article  Google Scholar 

  • Lee, D. H., Kim, M. H., Kwon, S. H., Kim, J. W., and Lee, Y. B., 2007. A parametric sensitivity study on LNG tank sloshing loads by numerical simulations. Ocean Engineering, 34 (1): 3–9.

    Article  Google Scholar 

  • Linton, C. M., and McIver, P., 2001. Handbook of Mathematical Techniques for Wave-Structure Interactions. Chapman & Hall/CRC, Boca Raton, 23–29.

    Book  Google Scholar 

  • Liu, D., and Lin, P., 2008. A numerical study of three-dimensional liquid sloshing in tanks. Journal of Computational Physics, 227: 3921–3939.

    Article  Google Scholar 

  • Lu, L., Jiang, S. C., Zhao, M., and Tang, G. Q., 2015. Two-dimensional viscous numerical simulation of liquid sloshing in rectangular tank with/without baffles and comparison with potential flow solutions. Ocean Engineering, 108: 662–677.

    Article  Google Scholar 

  • Molin, B., and Remy, F., 2013, Experimental and numerical study of the sloshing motion in a rectangular tank with a perforated screen. Journal of Fluids and Structures, 43: 463–480.

    Article  Google Scholar 

  • OpenFOAM Foundation, 2016. OpenFOAM User Guide. URL: http://www.openfoam.org/docs/user/.

    Google Scholar 

  • Tait, M. J., El Damatty, A. A., and Isyumov, N., 2004. Testing of tuned liquid damper with screens and development of equivalent TMD model. Wind and Structures, 7 (4): 215–234.

    Article  Google Scholar 

  • Tait, M. J., El Damatty, A. A., Isyumov, N., and Siddique, M. R., 2005. Numerical flow models to simulate tuned liquid dampers (TLD) with slat screens. Journal of Fluids and Structures, 20 (8): 1007–1023.

    Article  Google Scholar 

  • VanLeer, B., 1997. Towards the ultimate conservative difference scheme. Journal of Computational Physics, 135 (2): 229–248.

    Article  Google Scholar 

  • Wemmenhove, R., Luppes, R., Veldman, A. E. P., and Bunnik, T., 2015, Numerical simulation of hydrodynamic wave loading by a compressible two-phase flow method. Computers and Fluids, 114: 218–231.

    Article  Google Scholar 

  • Xue, M. A., and Lin, P., 2011. Numerical study of ring baffle effects on reducing violent liquid sloshing. Computers & Fluids, 52: 116–129.

    Article  Google Scholar 

  • Xue, M. A., Lin, P. Z., Zheng, J. H., Ma, Y. X., Yuan, X. L., and Nguyen, V. T., 2013. Effects of perforated baffle on reducing sloshing in rectangular tank: Experimental and numerical study. China Ocean Engineering, 27 (5): 615–628.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 51490675, 51322903, and 51279224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, H., Liu, Y., Li, H. et al. Numerical analysis of the flow field in a sloshing tank with a horizontal perforated plate. J. Ocean Univ. China 16, 575–584 (2017). https://doi.org/10.1007/s11802-017-3369-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-017-3369-6

Key words

Navigation