Skip to main content
Log in

Cloning, expression and characterization of a lipase gene from marine bacterium Pseudoalteromonas lipolytica SCSIO 04301

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

A lipase gene, lip1233, isolated from Pseudoalteromonas lipolytica SCSIO 04301, was cloned and expressed in E. coli. The enzyme comprised 810 amino acid residues with a deduced molecular weight of 80 kDa. Lip1233 was grouped into the lipase family X because it contained a highly conserved motif GHSLG. The recombinant enzyme was purified with Ni-NTA affinity chromatography. The optimal temperature and pH value of Lip1233 were 45°C and 8.0, respectively. It retained more than 70% of original activity after being incubated in pH ranging from 6.0 to 9.5 for 30 min. It was stable when the temperature was below 45°C, but was unstable when the temperature was above 55°C. Most metal ions tested had no significant effect on the activity of Lip1233. Lip1233 remained more than original activity in some organic solvents at the concentration of 30% (v/v). It retained more than 30% activity after incubated in pure organic solvents for 12 h, while in hexane the activity was nearly 100%. Additionally, Lip1233 exhibited typical halotolerant characteristic as it was active under 4M NaCl. Lip1233 powder could catalyze efficiently the synthesis of fructose esters in hexane at 40°C. These characteristics demonstrated that Lip1233 is applicable to elaborate food processing and organic synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bose, A., and Keharia, H., 2013. Production, characterization and applications of organic solvent tolerant lipase by Pseudomonas aeruginosa AAU2. Biocatalysis and Agricultural Biotechnology, 2: 255–266.

    Article  Google Scholar 

  • Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein. Analytical Biochemistry, 72: 248–254.

    Article  Google Scholar 

  • Cadirci, B. H., and Yasa, I., 2010. An organic solvents tolerant and thermotolerant lipase from Pseudomonas fluorescens P21. Journal of Molecular Catalysis B–Enzymatic, 64: 155–161.

    Article  Google Scholar 

  • Cao, L. Q., Bornscheuer, U. T., and Schmid, R. D., 1998. Lipase-catalyzed solid-phase synthesis of sugar esters, IV: Selectivity of lipases towards primary and secondary hydroxyl groups in carbohydrates. Biocatalysis and Biotransformation, 16: 249–257.

    Article  Google Scholar 

  • Cui, S. S., Lin, X. Z., and Shen, J. H., 2011. Effects of coexpression of molecular chaperones on heterologous soluble expression of the cold-active lipase Lip-948. Protein Expression and Purification, 77: 166–172.

    Article  Google Scholar 

  • De Pascale, D., Cusano, A. M., Autore, F., Parrilli, E., di Prisco, G., Marino, G., and Tutino, M. L., 2008. The cold-active Lip1 lipase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a member of a new bacterial lipolytic enzyme family. Extremophiles, 12: 311–323.

    Article  Google Scholar 

  • Doukyu, N., and Ogino, H., 2010. Organic solvent-tolerant enzymes. Biochemical Engineering Journal, 48: 270–282.

    Article  Google Scholar 

  • Esteban-Torres, M., Mancheno, J. M., de las Rivas, B., and Munoz, R., 2015. Characterization of a halotolerant lipase from the lactic acid bacteria Lactobacillus plantarum useful in food fermentations. Lwt-Food Science and Technology, 60: 246–252.

    Article  Google Scholar 

  • Froger, A., and Hall, J. E., 2006. Transformation of plasmid DNA into E. coli using the heat shock method. Journal of Visualized Experiments Jove, 6: 253–253.

    Google Scholar 

  • Gaur, R., Gupta, A., and Khare, S. K., 2008. Purification and characterization of lipase from solvent tolerant Pseudomonas aeruginosa PseA. Process Biochemistry, 43: 1040–1046.

    Article  Google Scholar 

  • Gupta, R., Rathi, P., Gupta, N., and Bradoo, S., 2003. Lipase assays for conventional and molecular screening: An overview. Biotechnology and Applied Biochemistry, 37: 63–71.

    Article  Google Scholar 

  • Hasan, F., Shah, A. A., and Hameed, A., 2006. Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39: 235–251.

    Article  Google Scholar 

  • Li, L., Ji, F. L., Wang, J. Y., Li, Y. C., and Bao, Y. M., 2015. Esterification degree of fructose laurate exerted by Candida antarctica lipase B in organic solvents. Enzyme and Microbial Technology, 69: 46–53.

    Article  Google Scholar 

  • Lo Giudice, A., Michaud, L., de Pascale, D., De Domenico, M., di Prisco, G., Fani, R., and Bruni, V., 2006. Lipolytic activity of Antarctic cold-adapted marine bacteria (Terra Nova Bay, Ross Sea). Journal of Applied Microbiology, 101: 1039–1048.

    Article  Google Scholar 

  • Nielsen, H., Engelbrecht, J., Brunak, S., and VonHeijne, G., 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering, 10: 1–6.

    Article  Google Scholar 

  • Ogino, H., Nakagawa, S., Shinya, K., Muto, T., Fujimura, N., Yasuda, M., and Ishikawa, H., 2000. Purification and characterization of organic solvent-stable lipase from organic solvent-tolerant Pseudomonas aeruginosa LST-03. Journal of Bioscience and Bioengineering, 89: 451–457.

    Article  Google Scholar 

  • Pencreach, G., and Baratti, J. C., 1996. Hydrolysis of pnitrophenyl palmitate in n-heptane by the Pseudomonas cepacia lipase: A simple test for the determination of lipase activity in organic media. Enzyme and Microbial Technology, 18: 417–422.

    Article  Google Scholar 

  • Peng, R., Lin, J. P., and Wei, D. Z., 2010. Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa CS-2. Applied Biochemistry and Biotechnology, 162: 733–743.

    Article  Google Scholar 

  • Peng, R., Lin, J. P., and Wei, D. Z., 2011. Co-Expression of an organic solvent-tolerant lipase and its cognate foldase of Pseudomonas aeruginosa CS-2 and the application of the immobilized recombinant lipase. Applied Biochemistry and Biotechnology, 165: 926–937.

    Article  Google Scholar 

  • Perez, D., Martin, S., Fernandez-Lorente, G., Filice, M., Guisan, J. M., Ventosa, A., Garcia, M. T., and Mellado, E., 2011. A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). Plos One, 6: 1–11.

    Google Scholar 

  • Rashid, N., Shimada, Y., Ezaki, S., Atomi, H., and Imanaka, T., 2001. Low-temperature lipase from psychrotrophic Pseudomonas sp. KB700A. Applied and Environmental Microbiology, 67: 4064–4069.

    Article  Google Scholar 

  • Sabeder, S., Habulin, M., and Knez, Z., 2006. Lipase-catalyzed synthesis of fatty acid fructose esters. Journal of Food Engineering, 77: 880–886.

    Article  Google Scholar 

  • Salihu, A., and Alam, M. Z., 2015. Solvent tolerant lipases: A review. Process Biochemistry, 50: 86–96.

    Article  Google Scholar 

  • Schreck, S. D., and Grunden, A. M., 2014. Biotechnological applications of halophilic lipases and thioesterases. Applied Microbiology and Biotechnology, 98: 1011–1021.

    Article  Google Scholar 

  • Soultani, S., Engasser, J. M., and Ghoul, M., 2001. Effect of acyl donor chain length and sugar/acyl donor molar ratio on enzymatic synthesis of fatty acid fructose esters. Journal of Molecular Catalysis B-Enzymatic, 11: 725–731.

    Article  Google Scholar 

  • Sriyapai, P., Kawai, F., Siripoke, S., Chansiri, K., and Sriyapai, T., 2015. Cloning, expression and characterization of a thermostable esterase HydS14 from Actinomadura sp. strain S14 in Pichia pastoris. International Journal of Molecular Sciences, 16: 13579–13594.

    Article  Google Scholar 

  • Tarahomjoo, S., and Alemzadeh, I., 2003. Surfactant production by an enzymatic method. Enzyme and Microbial Technology, 33: 33–37.

    Article  Google Scholar 

  • Treichel, H., de Oliveira, D., Mazutti, M. A., Di Luccio, M., and Oliveira, J. V., 2009. A review on microbial lipases production. Food and Bioprocess Technology, 3: 182–196.

    Article  Google Scholar 

  • Wang, Q. F., Hou, Y. H., Ding, Y., and Yan, P. S., 2012. Purification and biochemical characterization of a cold-active lipase from Antarctic sea ice bacteria Pseudoalteromonas sp. NJ 70. Molecular Biology Reports, 39: 9233–9238.

    Article  Google Scholar 

  • Wang, X. Q., Yu, X. W., and Xu, Y., 2009. Homologous expression, purification and characterization of a novel highalkaline and thermal stable lipase from Burkholderia cepacia ATCC 25416. Enzyme and Microbial Technology, 45: 94–102.

    Article  Google Scholar 

  • Watanabe, T., Katayama, S., Matsubara, M., Honda, Y., and Kuwahara, M., 2000. Antibacterial carbohydrate monoesters suppressing cell growth of Streptococcus mutans in the presence of sucrose. Current Microbiology, 41: 210–213.

    Article  Google Scholar 

  • Yan, J. Y., Yang, H. K., Xu, L., and Yan, Y. J., 2007. Gene cloning, overexpression and characterization of a novel organic solvent tolerant and thermostable lipase from Galactomyces geotrichum Y05. Journal of Molecular Catalysis BEnzymatic, 49: 28–35.

    Article  Google Scholar 

  • Zhang, A. J., Gao, R. J., Diao, N. B., Xie, G. Q., Gao, G., and Cao, S. G., 2009. Cloning, expression and characterization of an organic solvent tolerant lipase from Pseudomonas fluorescens JCM5963. Journal of Molecular Catalysis B-Enzymatic, 56: 78–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, H., Mai, Z. & Zhang, S. Cloning, expression and characterization of a lipase gene from marine bacterium Pseudoalteromonas lipolytica SCSIO 04301. J. Ocean Univ. China 15, 1051–1058 (2016). https://doi.org/10.1007/s11802-016-3071-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-016-3071-0

Keywords

Navigation