Skip to main content
Log in

A comparative study of fish assemblages near aquaculture, artificial and natural habitats

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Habitat plays a critical role in regulating fish community structure. Using the data collected from a monthly trammel net survey in Ma’an archipelago off the east coast of China, we evaluated impacts of five different habitats (artificial reefs, mussel farms, cage aquaculture, rocky reefs and soft bottom) on fish assemblages. This study suggests that artificial reefs (AR) have significantly higher species richness, abundance and diversity than mussel farms (MF) or soft bottom (SB) habitats during most seasons, and that fish taxa in the AR habitats are similar to those in the rocky reef (RR) habitats. Two different fish assemblage patterns were revealed in the study area using non-metric multidimensional scaling ordination: an assemblage dominated by reef fishes (especially by Scorpaenidae species) in AR, RR and cage aquaculture (CA) habitats and an assemblage dominated by Sciaenidae species in MF and SB habitats. We suggest that reef fishes play a key role in differentiating fish community structures in the study area. Although few differences in fish abundance and diversity were found between the CA and SB habitats, a more diverse age structure was observed in the CA habitats. A much more complex fish assemblage and enhanced population of local species were established as a result of the presence of both floating and fixed artificial structures, probably through improved survival rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta, A., 1997. Use of multi-mesh gillnets and trammel nets to estimate fish species composition in coral reef and mangroves in the southwest coast of Puerto Rico. Caribbean Journal of Science, 33: 45–57.

    Google Scholar 

  • Addis, D. T., Patterson III, W. F., Dance, M. A., and Ingram Jr., G. W., 2013. Implications of reef fish movement from unreported artificial reef sites in the northern Gulf of Mexico. Fisheries Research, 147: 349–358.

    Article  Google Scholar 

  • Ambrose, R. F., and Swarbrick, S. L., 1989. Comparison of fish assemblages on artificial and natural reefs off the coast of southern California. Bulletin of Marine Science, 44: 718–733.

    Google Scholar 

  • Anderson, T. J., Syms, C., Roberts, D. A., and Howard, D. F., 2009. Multi-scale fish-habitat associations and the use of habitat surrogates to predict the organization and abundance of deep-water fish assemblages. Journal of Experimental Marine Biology and Ecology, 379: 34–42.

    Article  Google Scholar 

  • Araújo, F. G., Bailey, R. G., and Williams, W. P., 1999. Spatial and temporal variations in fish populations in the upper Thames Estuary. Journal of Fish Biology, 55: 836–853.

    Article  Google Scholar 

  • Baine, M., 2001. Artificial reefs: A review of their design, application, management and performance. Ocean and Coastal Management, 44: 241–259.

    Article  Google Scholar 

  • Bellwood, D. R., 1998. What are reef fishes?.-Comment on the report by D. R. Robertson: Do coral-reef fish faunas have a distinctive taxonomic structure? Coral Reefs, 17: 179–186.

    Article  Google Scholar 

  • Benaka, L., 1999. Fish Habitat: Essential Fish Habitat and Rehabilitation. American Fisheries Society, Bethesda, MD, USA, 480pp.

    Google Scholar 

  • Beyst, B., Hostens, K., and Mees, J., 2001. Factors influencing fish and macrocrustacean communities in the surf zone of sandy beaches in Belgium: temporal variation. Journal of Sea Research, 46: 281–294.

    Article  Google Scholar 

  • Bohnsack, J. A., 1989. Are high densities of fishes at artificial reefs the result of habitat limitation or behavioural preference?. Bulletin of Marine Science, 44: 631–645.

    Google Scholar 

  • Bortone, S. A., Martin, T., and Bundrick, C. M., 1994. Factors affecting fish assemblage development on a modular artificial reef in a northern Gulf of Mexico estuary. Bulletin of Marine Science, 55: 319–332.

    Google Scholar 

  • Bulleri, F., 2005. Role of recruitment in causing differences between intertidal assemblages on seawalls and rocky shores. Marine Ecology Progress Series, 287: 53–65.

    Article  Google Scholar 

  • Burta, J. A., Feary, D. A., Cavalcante, G., Baumand, A. G., and Usseglio, P., 2013. Urban breakwaters as reef fish habitat in the Persian Gulf. Marine Pollution Bulletin, 72: 342–350.

    Article  Google Scholar 

  • Campbell, M. D., Rose, K., Boswell, K., and Cowan, J., 2011. Individual-based modeling of an artificial reef fish community: Effects of habitat quantity and degree of refuge. Ecological Modelling, 222: 3895–3909.

    Article  Google Scholar 

  • Carr, M. H., and Hixon, M. A., 1997. Artificial reefs: The importance of comparisons with natural reefs. Fisheries, 22: 28–33.

    Article  Google Scholar 

  • Clarke, K. R., and Gorley, R. N., 2001. PRIMER v5: User manual/tutorial. PRIMER-E, Plymouth UK, 91pp.

    Google Scholar 

  • Clynick, B. G., Chapman, M. G., and Underwood, A. J., 2008a. Fish assemblages associated with urban structures and natural reefs in Sydney, Australia. Austral Ecology, 33: 140–150.

    Article  Google Scholar 

  • Clynick, B. G., McKindsey, C. W., and Archambault, P., 2008b. Distribution and productivity of fish and macroinvertebrates in mussel aquaculture sites in the Magdalen islands (Québec, Canada). Aquaculture, 283: 203–210.

    Article  Google Scholar 

  • DeMartini, E. E., Barnett, A. M., Johnson, T. D., and Ambrose, R. F., 1994. Growth and production estimates for biomass dominant fishes on a southern California artificial reef. Bulletin of Marine Science, 55: 484–500.

    Google Scholar 

  • Dempster, T., Sanchez-Jerez, P., Uglemd, I., and Bjørn, P.-A., 2010. Species-specific patterns of aggregation of wild fish around fish farms. Estuarine, Coastal and Shelf Science, 86: 271–275.

    Article  Google Scholar 

  • Dorenbosch, M., Grol, M. G. G., Nagelkerken, I., and Van der Velde, G., 2006. Seagrass beds and mangroves as potential nurseries for the threatened Indo-Pacific humphead wrasse, Cheilinus undulatus and Garibbean rainbow parrotfish, Scarus guacamaia. Biological Conservation, 129: 277–282.

    Article  Google Scholar 

  • Duffy, J. M., 1987. A review of the San Diego Bay stripied mullet, Mugil cephalus, fishery. California Department of Fish and Game. Marine Research Technical Report, 56:1–10.

    Google Scholar 

  • Fabi, G., Grati, F., Puletti, M., and Scarcella, G., 2004. Effects of fish community induced by installation of two gas platforms in the Adriatic Sea. Marine Ecology Progress Series, 273: 187–197.

    Article  Google Scholar 

  • Fernández, T. V., Anna, G. D., Badalamenti, F., and Pérez-Ruzafa, A., 2009. Effect of simulated macroalgae on the fish assemblage associated with a temperate reef system. Journal of Experimental Marine Biology and Ecology, 376: 7–16.

    Article  Google Scholar 

  • Fogarty, M. J., 1999. Essential habitat, marine reserves and fishery management. Trends in Ecology and Evolution, 14: 133–134.

    Article  Google Scholar 

  • França, S., Costa, M. J., and Cabral, H. N., 2009. Assessing habitat specific fish assemblages in estuaries along the Portuguese coast. Estuarine, Coastal and Shelf Science, 83: 1–12.

    Article  Google Scholar 

  • Fraschetti, S., Terlizze, A., and Boero, F., 2008. How many habitats are there in the sea (and where)?. Journal of Experimental Marine Biology and Ecology, 366: 109–115.

    Article  Google Scholar 

  • Gill, A. B., 2005. Offshore renewable energy: Ecological implications of generating electricity in the coastal zone. Journal of Applied Ecology, 42: 605–615.

    Article  Google Scholar 

  • Hajisamae, S., and Chou, L. M., 2003. Do shallow water habitats of an impacted coastal strait serve as nursery grounds for fish?. Estuarine, Coastal and Shelf Science, 56: 281–290.

    Article  Google Scholar 

  • Hansson, S., Hjerne, O., Harvey, C., Kitchell, J. F., Cox, S. P., and Essington, T. E., 2007. Managing Baltic Sea fisheries under contrasting production and predation regimes: Ecosystem model analyses. AMBIO: A Journal of the Human Environment, 36: 265–271.

    Article  Google Scholar 

  • James, L. B., 1988. Effects of kelp forest removal on associated fish assemblages in central California. Journal of Experimental Marine Biology and Ecology, 117: 227–238.

    Article  Google Scholar 

  • Johan, S., Leif, P., and Håkan, W., 2007. Food utilization by coastal fish assemblages in rocky and soft bottoms on the Swedish west coast: Inference for identification of essential fish habitats. Estuarine, Coastal and Shelf Science, 71: 593–607.

    Article  Google Scholar 

  • Leber, K. M., Kitada, S., Blankenship, H. L., and Svasand, T., 2004. Stock Enhancement and Sea Ranching. Blackwell Publishing Ltd., UK, 576pp.

    Book  Google Scholar 

  • Machias, A., Karakassis, I., Labropoulou, M., Somarakis, S., Papadopoulou, K. N., and Papaconstantinou, C., 2004. Changes in wild fish assemblages after the establishment of a fish farming zone in an oligotrophic marine ecosystem. Estuarine, Coastal and Shelf Science, 60: 771–779.

    Article  Google Scholar 

  • Martin, S., Alfred, S., Antti, L., Johanna, M., Kajsa, R., and Lauri, U., 2009. Fish assemblages in coastal lagoons in landuplift succession: The relative importance of local and regional environmental gradients. Estuarine, Coastal and Shelf Science, 81: 247–256.

    Article  Google Scholar 

  • Masuda, R., Shiba, M., Yamashita, Y., Ueno, M., Kai, Y., Nakanishi, A., Torikoshi, M., and Tanaka, M., 2010. Fish assemblages associated with three types of artificial reefs: Density of assemblages and possible impacts on adjacent fish abundance. Fishery Bulletin, 108: 162–173.

    Google Scholar 

  • Morrisey, D. J., Cole, R. G., Davey, N. K., Handley, S. J., Bradley, A., Brown, S. N., and Madarasz, A. L., 2006. Abundance and diversity of fish on mussel farms in New Zealand. Aquaculture, 252: 277–288.

    Article  Google Scholar 

  • Murdoch, T. J. T., Glasspool, A. F., Outerbridge, M., Ward, J., Manuel, S., Gray, J., Nash, A., Coates, K. A., Pitt, J., Fourqurean, J. W., Barnes, P. A., Vierros, M., Holzer, K., and Smith, S. R., 2007. Large-scale decline in offshore seagrass meadows in Bermuda. Marine Ecology Progress Series, 339: 123–130.

    Article  Google Scholar 

  • Nagelkerken, I., van der Velde, G., Gorissen, M. W., Meijer, G. J., van’t Hof, T., den Johan, S., Leif, P., and Håkan, W., 2007. Food utilization by coastal fish assemblages in rocky and soft bottoms on the Swedish west coast: Inference for identification of essential fish habitats. Estuarine, Coastal and Shelf Science, 71: 593–607.

    Article  Google Scholar 

  • Ogawa, R., 1973. Various biological questions regarding artificial reefs. Ocean Age, 3: 21–30.

    Google Scholar 

  • Olin, M., Kurkilahti, M., Peitola, P., and Ruuhijärvi, J., 2004. The effects of fish accumulation on the catchability of multimesh gillnet. Fisheries Research, 68: 135–147.

    Article  Google Scholar 

  • Perkol-Finkel, S., Zilman, G., Sella, I., Miloh, T., and Benayahu, Y., 2008. Floating and fixed artificial habitats: Spatial and temporal patterns of benthic communities in a coral reef environment. Estuarine, Coastal and Shelf Science, 77: 491–500.

    Article  Google Scholar 

  • Pickering, H., and Whitmarsh, D., 1997. Artificial reefs and fisheries exploitation: A review of the ‘attraction versus production’ debate, the influence of design and its significance for policy. Fisheries Research, 31: 39–59.

    Article  Google Scholar 

  • Pizzolon, M., Cenci, E., and Mazzoldi, C., 2008. The onset of fish colonization in a coastal defence structure (Chioggia, Northern Adriatic Sea). Estuarine, Coastal and Shelf Science, 78: 166–178.

    Article  Google Scholar 

  • Polovina, J. J., 1994. Function of artificial reefs. Bulletin of Marine Science, 55: 1349.

    Google Scholar 

  • Relini, G., Relini, M., Palandri, G., Merello, S., and Beccornia, E., 2007. History, ecology and trends for artificial reefs of the Ligurian Sea, Italy. Hydrobiologia, 580: 193–217.

    Article  Google Scholar 

  • Rilov, G., and Benayahu, Y., 2000. Fish assemblages on natural versus vertical artificial reefs: The rehabilitation perspective. Marine Biology, 136: 931–942.

    Article  Google Scholar 

  • Rybicki, J., and Hanski, I., 2013. Sepecies-area relationships and extinctions caused by habitat loss and fragmentation. Ecology Letters, 16: 27–38.

    Article  Google Scholar 

  • San Diego-McGlone, M. L., Azanza, R. V., Villanoy, C. L., and Jacinto, G. S., 2008. Eutrophic waters, algal bloom and fish kill in fish farming areas in Bolinao, Pangasinan, Philippines. Marine Pollution Bulletin, 57: 295–301.

    Article  Google Scholar 

  • Santos, M. N., and Monteiro, C. C., 1997. The Olhão artificial reef system (south Portugal): Fish assemblages and fishing yield. Fisheries Research, 30: 33–41.

    Article  Google Scholar 

  • Santos, M. N., and Monteiro, C. C., 1998. Comparison of the catch and fishing yield from an artificial reef system and neighbouring areas off Faro (Algarve, south Portugal). Fisheries Research, 39: 55–65.

    Article  Google Scholar 

  • Sebens, K. P., 1991. Habitat structure and community dynamics in marine benthic systems. In: Habitat Structure: The Physical Arrangement of Objects in Space. Bell, S. S., et al., eds., Chapman and Hall, New York, 211pp.

    Google Scholar 

  • Sih, A., Jonsson, B. G., and Luikart, G., 2000. Habitat loss: ecological, evolutionary and genetic consequences. Trends in Ecology and Evolution, 15: 132–134.

    Article  Google Scholar 

  • Simon, T., Pinheiro, H. T., and Joyeux, J. C., 2011. Target fishes on artificial reefs: Evidences of impacts over nearby natural environments. Science of the Total Environment, 409: 4579–4584.

    Article  Google Scholar 

  • Stanley, D. A., and Wilson, C. A., 2000. Variation in the density and species composition of fishes associated with three petroleum platforms using dual beam hydroacoustics. Fisheries Research, 47: 161–172.

    Article  Google Scholar 

  • Stone, R. B., Pratt, H. L., Parker, R. O., and Davis Jr., G. E., 1979. A comparison of fish populations on an artificial and natural reef in the Florida Keys. Marine Fisheries Review, 41: 1–11.

    Google Scholar 

  • Sudirman, H. H., Jompa, J., Iswahyudin, Z., and McKinnon, A. D., 2009. Wild fish associated with tropical sea cage aquaculture in South Sulawesi, Indonesia. Aquaculture, 286: 233–239.

    Article  Google Scholar 

  • Theodorou, J. A., Sorgeloos, P., Adams, C. M., Viaene, J., and Tzovenis, I., 2010. Optimal farm sie for the production of the mediterranean mussel (Mytilus galloprovinalis) in Greece. IIFET 2010 Montpellier Proceedings, 6pp.

    Google Scholar 

  • Valle, C., Bayle-Sempere, J. T., Dempster, T., Sanchez-Jerez, P., and Gimenez-Casalduero, F., 2007. Temporal variability of wild fish assemblages associated with a sea-cage fish farm in the south-western Mediterranean Sea. Estuarine, Coastal and Shelf Science, 72: 299–307.

    Article  Google Scholar 

  • Walker, B. K., Henderson, B., and Spieler, R. E., 2002. Fish assemblages associated with artificial reefs of concrete aggregates or quarry stone offshore Miami Beach, Florida, USA. Aquatic Living Resources, 15: 95–105.

    Article  Google Scholar 

  • Wang, Z. H., Zhang, S. Y., and Wang, K., 2010. Fish and macroinvertebrates community structure in artificial habitat around Sanheng Isle, Shengsi, China. Acta Ecologica Sinica, 30: 2026–2035 (in Chinese).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Chen, Y., Zhang, S. et al. A comparative study of fish assemblages near aquaculture, artificial and natural habitats. J. Ocean Univ. China 14, 149–160 (2015). https://doi.org/10.1007/s11802-015-2455-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-015-2455-x

Key words

Navigation