Skip to main content
Log in

Study on internal waves generated by tidal flow over critical topography

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Resonance due to critical slope makes the internal wave generation more effectively than that due to supercritical or subcritical slopes (Zhang et al., 2008). Submarine ridges make a greater contribution to ocean mixing than continental margins in global oceans (Müller, 1977; Bell, 1975; Baines, 1982; Morozov, 1995). In this paper, internal wave generation driven by tidal flow over critical topography is examined in laboratory using Particle Image Velocimetry (PIV) and synthetic schlieren methods in synchrony. Non-tidal baroclinic velocities and vertical isopycnal displacements are observed in three representative regions, i.e., critical, outward-propagating, and reflection regions. Temporal and spatial distributions of internal wave rays are analyzed using the time variations of baroclinic velocities and vertical isopycnal displacement, and the results are consistent with those by the linear internal wave theory. Besides, the width of wave beam changes with the outward propagation of internal waves. Finally, through monitoring the uniformly-spaced 14 vertical profiles in the x-z plane, the internal wave fields of density and velocity fields are constructed. Thus, available potential energy, kinetic energy and energy fluxes are determined quantitatively. The distributions of baroclinic energy and energy fluxes are confined along the internal wave rays. The total depth averaged energy and energy flux of vertical profiles away from a ridge are both larger than those near the ridge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Althaus, A. M., Kunze, E., and Sanford, T. B., 2003. Internal tide radiation from Mendocino Escarpment. Journal of Physical Oceanography, 33: 1510–1527.

    Article  Google Scholar 

  • Baines, P. G., 1973. The generation of internal tides by flat-bump topography. Deep-Sea Research, 20: 179–205.

    Google Scholar 

  • Baines, P. G., 1982. On internal tide generation models. Deep-Sea Research, 29: 307–338.

    Article  Google Scholar 

  • Baines, P. G., and Fang, X. H., 1985. Internal tide generation at a continental shelf/slope junction: A comparison between theory and a laboratory experiment. Dynamics of Atmospheres and Oceans, 9: 297–314.

    Article  Google Scholar 

  • Balmforth, N. J., Ierley, G. R., and Young, W. R., 2002. Tidal conversion by subcritical topography. Journal of Physical Oceanography, 32: 2900–2914.

    Article  Google Scholar 

  • Bell, T. H., 1975. Topographically generated internal waves in the open ocean. Journal of Geophysical Research, 80: 320–327.

    Article  Google Scholar 

  • Chang, M.-H., Lien, R.-C., Tang, T. Y., D’Asaro, E. A., and Yang, Y. J., 2006. Energy flux of nonlinear internal waves in northern South China Sea. Geophysical Research Letters, 33, L03607.

    Google Scholar 

  • Dalziel, S. B., Hughes, G. O., and Sutherland, B. R., 2000. Whole-field density measurements by ‘synthetic schlieren’. Experiments in Fluids, 28: 322–335.

    Article  Google Scholar 

  • Dalziel, S. B., Carr, M., Sveen, J. K., and Davies, P. A., 2007. Simultaneous synthetic schlieren and PIV measurements for internal solitary waves. Measurement Science and Technolog, 18: 533–547.

    Article  Google Scholar 

  • Dossmann, Y., Paci, A., Auclair, F., and Floor, J. W., 2011. Si-multaneous velocity and density measurements for an energy-based approach to internal waves generated over a ridge. Experiments in Fluids, 51: 1013–1028.

    Article  Google Scholar 

  • Floor, J. W., Auclair, F., and Marsaleix, P., 2011. Energy transfers in internal tide generation, propagation and dissipation in the deep ocean. Ocean Modelling, 38: 22–40.

    Article  Google Scholar 

  • Garrett, G., and Kunze, E., 2007. Internal tide generation in the deep ocean. Annual Review of Fluid Mechanics, 39: 57–87.

    Article  Google Scholar 

  • Gill, A. E., 1982. Atmosphere-Ocean Dynamics. Academic Press, New York, 662pp.

    Google Scholar 

  • Gostiaux, L., and Dauxois, T., 2008. Laboratory experiments on the generation of internal tidal beams over steep slopes. Physics of Fluids, 19: 28–35.

    Google Scholar 

  • Hill, D. F., 2002. General density gradients in general domains: the ‘two-tank’ method revisited. Experiments in Fluids, 32: 434–440.

    Article  Google Scholar 

  • Ihle, C. F., Dalziel, S. B., and Niño, Y., 2009. Simultaneous particle image velocimetry and synthetic schlieren measurements of an erupting thermal plume. Measurement Science and Technolog, 20, 125402, DOI: 10.1088/0957-0233/20/12/125402

    Article  Google Scholar 

  • Lim, K., Ivey, G. N., and Jones, N. L., 2010. Experiments on the generation of internal waves over continental shelf topography. Journal of Fluid Mechanics, 663: 385–400.

    Article  Google Scholar 

  • Lamb, K. G., 2007. Energy and pseudoenergy flux in the internal wave field generated by tidal flow over topography. Continental Shelf Research, 27: 1208–1232.

    Article  Google Scholar 

  • Morozov, E. G., 1995. Semidiurnal internal wave global field. Deep-Sea Research I, 42(1): 135–148.

    Article  Google Scholar 

  • Müller, P., 1977. Spectral features of the energy transfer between internal waves and a larger-scale shear flow. Dynamics of Atmospheres and Oceans, 2: 49–72.

    Article  Google Scholar 

  • Munk, W., and Wunsch, C., 1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Research I, 45: 1977–2010.

    Article  Google Scholar 

  • Nash, J. D., Kunze, E., Lee, C. M., and Sanford, T. B., 2006. Structure of the baroclinic tide generated at Kaena Ridge, Hawaii. Journal of Physical Oceanography, 36: 1123–1135.

    Article  Google Scholar 

  • Peacock, T., Echeverri, P., and Balmforth, N. J., 2008. An experimental investigation of internal tide generation by two-dimensional topography. Journal of Physical Oceanography, 38: 235–242.

    Article  Google Scholar 

  • Rattray, M. J., 1960. On the coastal generation of internal tides. Tellus, 12: 54–62.

    Article  Google Scholar 

  • Wang, T., Chen, X., and Jiang, W. S., 2012. Laboratory experiments on the generation of internal waves on two kinds of continental margin. Geophysical Research Letters, 39: L04602.

    Google Scholar 

  • Zeilon, N., 1912. On Tidal Boundary-Waves and Related Hydrodynamical Problems. Almqvist & Wiksells.

    Google Scholar 

  • Zeilon, N., 1934. Experiments on Boundary Tides: A Preliminary Report. Elander.

    Google Scholar 

  • Zhang, H. P., King, B., and Swinney, H. L., 2007. Experimental study of internal gravity waves generated by supercritical topography. Experiments in Fluids, 19, 096602, DOI: 10.1063/1.2766741.

    Article  Google Scholar 

  • Zhang, H. P., King, B., and Swinney, H. L., 2008. Resonant generation of internal waves on a model continental slope. Physical Review Letters, 100(24), 244504.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Chen, X., Li, Q. et al. Study on internal waves generated by tidal flow over critical topography. J. Ocean Univ. China 13, 728–732 (2014). https://doi.org/10.1007/s11802-014-2175-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-014-2175-7

Key words

Navigation