Skip to main content
Log in

Modeling seasonal variations of subsurface chlorophyll maximum in South China Sea

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

In the South China Sea (SCS), the subsurface chlorophyll maximum (SCM) is frequently observed while the mechanisms of SCM occurrence have not been well understood. In this study, a 1-D physical-biochemical coupled model was used to study the seasonal variations of vertical profiles of chlorophyll-a (Chl-a) in the SCS. Three parameters (i.e., SCM layer (SCML) depth, thickness, and intensity) were defined to characterize the vertical distribution of Chl-a in SCML and were obtained by fitting the vertical profile of Chl-a in the subsurface layer using a Gaussian function. The seasonal variations of SCMs are reproduced reasonably well compared to the observations. The annual averages of SCML depth, thickness, and intensity are 75 ± 10 m, 31 ± 6.7 m, and 0.37 ± 0.11 mg m−3, respectively. A thick, close to surface SCML together with a higher intensity occurs during the northeastern monsoon. Both the SCML thickness and intensity are sensitive to the changes of surface wind speed in winter and summer, but the surface wind speed exerts a minor influence on the SCML depth; for example, double strengthening of the southwestern monsoon in summer can lead to the thickening of SCML by 46%, the intensity decreasing by 30%, and the shoaling by 6%. This is because part of nutrients are pumped from the upper nutricline to the surface mixed layer by strong vertical mixing. Increasing initial nutrient concentrations by two times will increase the intensity of SCML by over 80% in winter and spring. The sensitivity analysis indicates that light attenuation is critical to the three parameters of SCM. Decreasing background light attenuation by 20% extends the euphotic zone, makes SCML deeper (∼20%) and thicker (12%–41%), and increases the intensity by over 16%. Overall, the depth of SCML is mainly controlled by light attenuation, and the SCML thickness and intensity are closely associated with wind and initial nitrate concentration in the SCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckmann, A., and Hense, I., 2007. Beneath the surface: Characteristics of oceanic ecosystems under weak mixing conditions-A theoretical investigation. Progress in Oceanography, 75(4): 771–796.

    Article  Google Scholar 

  • Bienfang, P. K., 1980. Phytoplankton sinking rates in oligotrophic waters off Hawaii, USA. Marine Biology, 61(1): 69–77.

    Article  Google Scholar 

  • Chen, C. C., Shiah, F. K., Chung, S. W., and Liu, K. K., 2006. Winter phytoplankton blooms in the shallow mixed layer of the South China Sea enhanced by upwelling. Journal of Marine Systems, 59(1): 97–110.

    Article  Google Scholar 

  • Chen, Y. L., Chen, H. Y., Karl, D. M., and Takahashi, M., 2004. Nitrogen modulates phytoplankton growth in spring in the South China Sea. Continental Shelf Research, 24(4–5): 527–541.

    Article  Google Scholar 

  • Cullen, J. J., 1982. The deep chlorophyll maximum: Comparing vertical profiles of chlorophyll a. Canadian Journal of Fisheries and Aquatic Sciences, 39(5): 791–803.

    Article  Google Scholar 

  • Fennel, K., and Boss, E., 2003. Subsurface maxima of phytoplankton and chlorophyll: Steady-state solutions from a simple model. Limnology and Oceanogoraphy, 48(4): 1521–1534.

    Article  Google Scholar 

  • Gong, X., Shi, J., and Gao, H. W., 2012. Subsurface chlorophyll maximum in ocean: Its characteristics and influencing factors. Advances in Earth Science, 27(5): 539–548.

    Google Scholar 

  • Hanson, C. E., Pesant, S., Waite, A. M., and Pattiaratchi, C. B., 2007. Assessing the magnitude and significance of deep chlorophyll maxima of the coastal eastern Indian Ocean. Deep-Sea Research Part II, 54(8–10): 884–901.

    Article  Google Scholar 

  • Hense, I., and Beckmann, A., 2008. Revisiting subsurface chlorophyll and phytoplankton distributions. Deep Sea Research Part I, 55(9): 1193–1199.

    Article  Google Scholar 

  • Hodges, B. A., and Rudnick, D. L., 2004. Simple models of steady deep maxima in chlorophyll and biomass. Deep-Sea Res Part I, 51(8): 999–1015.

    Article  Google Scholar 

  • Holm-Hansen, O., and Hewes, C. D., 2004. Deep chlorophyll-a maxima (DCMs) in Antarctic waters. Polar Biology, 27(11): 699–710.

    Article  Google Scholar 

  • Hopkinson, B. M., and Barbeau, K. A., 2008. Interactive influences of iron and light limitation on phytoplankton at subsurface chlorophyll maxima in the eastern North Pacific. Limnology and Oceanography, 53(4): 1303–1318.

    Article  Google Scholar 

  • Huang, B. Q., Lin, X. J., Liu, Y., Dai, M. H., Hong, H. S., and Williams, K. K. L., 2002. Ecological study of picoplankton in northern South China Sea. Chinese Journal of Oceanology and Limnology, 20 (Special Issue): 22–32.

    Article  Google Scholar 

  • Huisman, J., Thi, N., Karl, D. M., and Sommeijer, B., 2006. Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature, 439(7074): 322–325.

    Article  Google Scholar 

  • Jamart, B. M., Winter, D. F., Banse, K., Anderson, G. C., and Lam, R. K., 1977. A theoretical study of phytoplankton growth and nutrient distribution in the Pacific Ocean off the northwestern US coast. Deep-Sea Research, 24(8): 753–773.

    Article  Google Scholar 

  • Karl, D. M., and Lukas, R., 1996. The Hawaii Ocean Timeseries (HOT) program: Background, rationale and field implementation. Deep-Sea Research Part II, 43(2): 129–156.

    Article  Google Scholar 

  • Klausmeier, C. A., and Litchman, E., 2001. Algal games: The vertical distribution of phytoplankton in poorly mixed water columns. Limnology and Oceanography, 8(46): 1998–2007.

    Article  Google Scholar 

  • Lee Chen, Y., 2005. Spatial and seasonal variations of nitratebased new production and primary production in the South China Sea. Deep-Sea Research Part I, 52(2): 319–340.

    Article  Google Scholar 

  • Lewis, M. R., Cullen, J. J., and Platt, T., 1983. Phytoplankton and thermal structure in the upper ocean: consequences of nonuniformity in chlorophyll profile. Journal of Geophysical Research, 88(C4): 2565–2570.

    Article  Google Scholar 

  • Lin, I. I., Chen, J. P., Wong, G. T. F., Huang, C. W., and Lien, C. C., 2007. Aerosol input to the South China Sea: Results from the MODerate resolution imaging spectro-radiometer, the quick scatterometer, and the measurements of pollution in the troposphere sensor. Deep-Sea Research Part II, 54(14–15): 1589–1601.

    Article  Google Scholar 

  • Liu, K. K., Chao, S. Y., Shaw, P. T., Gong, G. C., Chen, C. C., and Tang, T. Y., 2002. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: Observations and a numerical study. Deep-Sea Research Part I, 49(8): 1387–1412.

    Article  Google Scholar 

  • Liu, K. K., Chen, Y. J., Tseng, C. M., Lin, I. I., Liu, H. B., and Snidvongs, A., 2007. The significance of phytoplankton photo-adaptation and benthic-pelagic coupling to primary production in the South China Sea: Observations and numerical investigations. Deep-Sea Research Part II, 54(14–15): 1546–1574.

    Article  Google Scholar 

  • Lu, Z., Gan, J., Dai, M., and Cheung, A., 2010. The influence of coastal upwelling and a river plume on the subsurface chlorophyll maximum over the shelf of the northeastern South China Sea. Journal of Marine Systems, 82(1–2): 35–46.

    Article  Google Scholar 

  • Martin, J., Tremblay, J., Gagnon, J., Tremblay, G., Lapoussière, A., Jose, C., Poulin, M., Gosselin, M., Gratton, Y., and Michel, C., 2010. Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters. Marine Ecology Progress Series, 412: 69–84.

    Article  Google Scholar 

  • Mellard, J. P., Yoshiyama, K., Litchman, E., and Klausmeier, C. A., 2011. The vertical distribution of phytoplankton in stratified water columns. Journal of Theoretical Biology, 269(1): 16–30.

    Article  Google Scholar 

  • Merrill, J. T., Uematsu, M., and Bleck, R., 1989. Meteorological analysis of long range transport of mineral aerosols over the North Pacific. Journal of Geophysical Research, 94(D6): 8584–8598.

    Article  Google Scholar 

  • Ning, X., Chai, F., Xue, H., Cai, Y., Liu, C., and Shi, J., 2004. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea, Journal of Geophysical Research, 109: 1–20.

    Article  Google Scholar 

  • Pérez, V., Fernández, E., Maraón, E., Morán, X., and Zubkov, M. V., 2006. Vertical distribution of phytoplankton biomass, production and growth in the Atlantic subtropical gyres. Deep-Sea Research Part I, 53(10): 1616–1634.

    Article  Google Scholar 

  • Platt, T., Sathyendranath, S., Caverhill, C. M., and Lewis, M. R., 1988. Ocean primary production and available light: Further algorithms for remote sensing. Deep-Sea Research Part I, 35(6): 855–879.

    Article  Google Scholar 

  • Radenac, M. H., and Rodier, M., 1996. Nitrate and chlorophyll distributions in relation to thermohaline and current structures in the western tropical Pacific during 1985-1989. Deep-Sea Research Part II, 43(4–6): 725–752.

    Article  Google Scholar 

  • Riley, G. A., Stommel, H., and Bumpus, D. F., 1949. Quantitative ecology of the plankton of the western North Atlantic. Bulletin Bingham Oceanographical Collection, 12(3): 1–69.

    Google Scholar 

  • Shaw, P. T., and Chao, S. Y., 1994. Surface circulation in the South China Sea. Deep-Sea Research Part I, 41(11–12): 1663–1683.

    Article  Google Scholar 

  • Shaw, P. T., Chao, S. Y., Liu, K. K., Pai, S. C., and Liu, C. T., 1996. Winter upwelling off Luzon in the northeastern South China Sea. Journal of Geophysical Research, 101(16): 416–435.

    Google Scholar 

  • Siswanto, E., Ishizaka, J., and Yokouchi, K., 2005. Estimating Chlorophyll-a vertical profiles from satellite data and the implication for primary production in the Kuroshio front of the East China Sea. Journal of Oceanography, 61(3): 575–589.

    Article  Google Scholar 

  • Takahashi, M., and Hori, T., 1984. Abundance of picophytoplankton in the subsurface chlorophyll maximum layer in subtropical and tropical waters. Marine Biology, 79(2): 177–186.

    Article  Google Scholar 

  • Tang, D. L., Ni, I. H., Kester, D. R., and Muller-Karger, F. E., 1999. Remote sensing observations of winter phytoplankton blooms southwest of the Luzon Strait in the South China Sea. Marine Ecology-Progress Series, 191: 43.

    Article  Google Scholar 

  • Teira, E., Mourio, B., Maraón, E., Pérez, V., Pazo, M. J., Serret, P., de Armas, D., Escanez, J., Woodward, E., and Fernández, E., 2005. Variability of chlorophyll and primary production in the Eastern North Atlantic Subtropical Gyre: Potential factors affecting phytoplankton activity. Deep-Sea Research Part I, 52(4): 569–588.

    Article  Google Scholar 

  • Tseng, C. M., Wong, G. T. F., Lin, I. I., Wu, C. R., and Liu, K. K., 2005. A unique seasonal pattern in phytoplankton biomass in low-latitude waters in the South China Sea. Geophysical Research Letters, 32(8), L8608.

    Article  Google Scholar 

  • Varela, R. A., Cruzado, A., and Tintoré, J., 1994. A simulation analysis of various biological and physical factors influencing the deep-chlorophyll maximum structure in oligotrophic areas. Journal of Marine Systems, 5(2): 143–157.

    Article  Google Scholar 

  • Venrick, E. L., 1993. Phytoplankton seasonality in the central North Pacific: The endless summer reconsidered. Limnology and Oceanography, 38(6): 1135–1149.

    Article  Google Scholar 

  • Vichi, M., Baretta, J. W., Baretta-Bekker, J. G., and Al, E., 2004. European Regional Seas Ecosystem Model III: Review of the biogeochemical equations. http://www.bo.ingv.it/ersem3.

    Google Scholar 

  • Wang, D. X., Du Y., and Shi P., 2002. Climatological Atlas of Physical Oceanography in the Upper Layer of the South China Sea. China Meteorological Press, Beijing, 19–42.

    Google Scholar 

  • Weston, K., Fernand, L., Mills, D. K., Delahunty, R., and Brown, J., 2005. Primary production in the deep chlorophyll maximum of the central North Sea. Journal of Plankton Research, 27(9): 909–922.

    Article  Google Scholar 

  • Wong, G. T. F., Ku, T. L., Mulholland, M., Tseng, C. M., and Wang, D. P., 2007a. The Southeast Asian time-series study (SEATS) and the biogeochemistry of the South China Sea-an overview. Deep-Sea Research Part II, 54(14–15): 1434–1447.

    Article  Google Scholar 

  • Wong, G. T. F., Tseng, C. M., Wen, L. S., and Chung, S. W., 2007b. Nutrient dynamics and N-anomaly at the SEATS station. Deep-Sea Research Part II, 54(14–15): 1528–1545.

    Article  Google Scholar 

  • Xia, J., and Gao, H. W., 2006. Simulation on seasonal cycle vertical structure of plankton ecosystem in eastern area of South Yellow Sea. Journal of Safety and Environment, 6(4): 59–65.

    Google Scholar 

  • Zhang, C., Shi, J., Gao, H. W., and Gao, Z. H., 2011. Simulation of seasonal cycle of the plankton ecosystem’s vertical structure in the northern area (SEATS) of the South China Sea. Periodical of Ocean University of China, 41(3): 11–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiwang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Shi, J. & Gao, H. Modeling seasonal variations of subsurface chlorophyll maximum in South China Sea. J. Ocean Univ. China 13, 561–571 (2014). https://doi.org/10.1007/s11802-014-2060-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-014-2060-4

Key words

Navigation