Skip to main content
Log in

Multiple excitation wavelength fluorescence emission spectra technique for discrimination of phytoplankton

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

In vivo fluorescence methods are efficient tools for studying the distribution of phytoplankton in nature. Different algae species usually have different pigments with different ratios, which results in different fluorescence emission spectra. Based on multiple excitation wavelength fluorescence emission spectra, a discrimination technique is established in this study. The discrimination method, established by multivariate linear regression and weighted least-squares, was used to differentiate the samples cultured in the laboratory and collected from Jiaozhou Bay near Qingdao at the division level. The correctly discriminated samples were ≥ 86% for single algae samples, ≥ 88% for simulatively mixed ones, ≥ 91% for physically mixed ones and 100% for samples collected from Jiaozhou Bay. The result in this research is more definite for the physically mixed samples in the laboratory. The method described here can be employed to monitor the phytoplankton population in the marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beutler, M., Wiltshire, K. H., Meyer, B., Moldaenke, C., Lüring, C., Meyerhöfer, M., et al., 2002. A fluorometric method for the differentiation of algael populations in vivo and in situ. Photosyn. Res., 72: 39–53.

    Article  Google Scholar 

  • Chiao, P., Fessler, J. A., Zasadny, K. R., and Wahl, R. L., 1995. Spectral analysis using regularized non-negative least-squaresestimation [positron emission tomography]. Nucl. Sci. Symp. Med. Imaging Conf. Rec., IEEE 3: 1680–1683.

    Article  Google Scholar 

  • Gibb, S. W., Cummings, D. G., Irgoien, X., Barlow, R. G., and Mantoura, R. F. C., 2001. Phytoplnakton pigment chemotaxonomy of the Northeastern Atlantic. Deep-Sea Res. II, 48: 795–823.

    Article  Google Scholar 

  • Guillard, R. R. L., and Ryther, J. H., 1962. Studies of marine plankton diatoms. I. Cyclotella nand Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol., 8: 229–239.

    Google Scholar 

  • Holm-Hansen, O., Lorenzen C. J., Holmes R. W., and Strickland J. D., 1965. Fluorometric determination of chlorophyll. J. Cons. Perm. Int. Explor. Mer., 30: 3–15.

    Google Scholar 

  • Hu, X. P., Su, R. G., Zhang, C. S., and Wang, X. L., 2008. Fluorescence discrimination technology for the red tide algae by spectra similarity index. Chin. J. Lasers, 35(1): 115–119.

    Article  Google Scholar 

  • Ikeya, T., Ohki, K., Takahashi, M., and Fujita, Y., 1994. Photosynthetic characteristics of marine Synechococcus spp. With special reference to light environments near the bottom of the euphotic zone of the open ocean. Mar. Biol., 118: 215–221.

    Article  Google Scholar 

  • Katty, W., Ilan, V., and Michael, G., 2002. Comparing similar spectra: from similarity index to spectral contrast angle. J. Am. Soc. Mass Spectr., 13: 85–88.

    Article  Google Scholar 

  • Keller, D., Selvin, C., Claus, W., and Guillard, L., 1987. Media for the culture of oceanic ultraphytoplankton. J. Phycol., 23: 633–638.

    Article  Google Scholar 

  • Lee, T., Tsuzuki, M., Takeuchi, T., Yokoyama, K. and Karube, I., 1995. Quantitative determination of cyanobacteria in mixed phytoplankton assemblages by an in vivo fluorimetric method, Anal. Chim. Acta, 302: 81–87.

    Article  Google Scholar 

  • Llewellyn, A., and Gibb, S. W., 2000. Intra-class variability in the carbon, pigment and biomineral content of prymnesiophytes and diatoms. Mar. Ecol. Prog. Ser., 193: 33–44.

    Article  Google Scholar 

  • Moberg, L., Karlberg, B., Blomquist, S., and Larsson, U., 2000. Comparison between a new application of multivariate regression and current spectroscopy methods for the determination of chlorophylls and their corresponding pheopigments. Anal. Chim. Acta, 411: 137–143.

    Article  Google Scholar 

  • Seppälä, J., 2003. Spectral absorption and fluorescence characteristics of the Baltic Sea phytoplankton. ICES CM 2003, L: 01.

  • Seppälä, J. and Balode, M., 1998. The use of spectral fluorescence methods to detect changes in the phytoplankton community. Hydrobiologia, 363: 207–217.

    Article  Google Scholar 

  • Stauber, L. and Jeffery, W., 1988. Photosynthetic pigments in 51 species of marine diatoms. J. Phycol., 24: 158–172.

    Google Scholar 

  • Wright, S. W. and Jeffery, S. W., 1987. Fucoxanthin pigment markers of marine phytoplankton analysed by HPLC and HPTLC. Mar. Ecol. Prog. Ser., 38: 259–266.

    Article  Google Scholar 

  • Zapata, M., Jeffrey, S. W., Wright, S. W., Rodríguez, F., Garrido, J. L., and Clementson, L., 2004. Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for ceanography and chemotaxonomy. Mar. Ecol. Prog. Ser., 270: 83–102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongguo Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Su, R., Zhang, F. et al. Multiple excitation wavelength fluorescence emission spectra technique for discrimination of phytoplankton. J. Ocean Univ. China 9, 16–24 (2010). https://doi.org/10.1007/s11802-010-0016-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-010-0016-x

Key words

Navigation