Skip to main content
Log in

Analysis of the polarization characteristics of scattered light of underwater suspended particles based on Mie theory

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Aiming at the problem of underwater polarized laser scattering caused by underwater suspended particles, the equivalent spherical particle Mie scattering theory simulation method is used to study the polarization characteristics of underwater scattered light. The relationship between underwater suspended particle characteristics and optical characteristics is analyzed, and the effects of particle size, polarization characteristics of incident light, and angle of incidence on the degree of polarization of forward and backward scattering light are studied. The results show that: When the incident light is natural light, the degree of polarization of scattered light is very low at the forward-scattering angle, which increases with the increase of the scattering angle, but changes frequently with the increase of the particle size. When the incident light is linearly polarized, the degree of linear polarization of the scattered light is related to the azimuth Angle. The degree of circular polarization is largely unaffected by particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Zaccanti, P. Bruscaglioni, M. Gurioli and P. Sansoni, Applied Optics 32, 1590 (1993).

    Article  ADS  Google Scholar 

  2. S. Zhang, J. T. Zhan, S. K. Bai, Q. Fu, J. Duan and H. L. Jiang, Acta Optica Sinica 36, 0729001 (2016). (in Chinese)

    Article  Google Scholar 

  3. O. K. Steinvall, Proceedings of SPIE — The International Society for Optical Engineering 32, 1307 (1992).

    Google Scholar 

  4. H. H. He, N. Zeng, R. Liao and H. Ma, Progress in Biochemistry and Biophysics 42, 419 (2015). (in Chinese)

    Google Scholar 

  5. R. M. Lerner and J. D. Summers, Applied Optics 21, 861 (1982).

    Article  ADS  Google Scholar 

  6. Q. Duntley, Journal of the Optical Society of America 53, 214 (1963).

    Article  ADS  Google Scholar 

  7. G. C. Wang, S. F. Dong, D. Wen and M. Qiao, Electronic Technology 47, 68 (2010). (in Chinese)

    ADS  Google Scholar 

  8. K. Ding, Y. W. Huang, W. Q. Jin, K. J. Jin and H. L. Li, Infrared Technology 35, 467 (2013). (in Chinese)

    Google Scholar 

  9. J. E. Hansen, Journal of Atmospheric Sciences 28, 120 (1971).

    Article  ADS  Google Scholar 

  10. J. E. Hansen and L. D. Travis, Space Science Reviews 16, 527 (1974).

    Article  ADS  Google Scholar 

  11. I. W. Sudiarta and P. Chylek, Journal of the Optical Society of America A 18, 1275 (2001).

    Article  ADS  Google Scholar 

  12. L. Ma, F. Duan, G. Song and L. Zhao, Measurement 117, 125 (2018).

    Article  ADS  Google Scholar 

  13. A. Ishimaru, S. Jaruwatanadilok and Y. Kuga, Applied Oprics 40, 5495 (2001).

    Article  ADS  Google Scholar 

  14. P. Sun, Y. Ma, W. Liu, C. Xu and X. Sun, Journal of Optics 15, 055708 (2013).

    Article  ADS  Google Scholar 

  15. S. K. Sahu and P. Shanmugam, Optics Express 23, 22291 (2015).

    Article  ADS  Google Scholar 

  16. Y. Guo, Y. Wang, F. Jin and G. Li, Water Tank Experiments for Laser Backward-Scattering Properties of Bubble Cluster, IEEE/OES China Ocean Acoustics (COA), 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-min Wang  (王英民).

Additional information

This work has been supported by the National Natural Science Foundation of China (No.61404362).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Q., Wang, Ym. & Zhang, Yl. Analysis of the polarization characteristics of scattered light of underwater suspended particles based on Mie theory. Optoelectron. Lett. 17, 252–256 (2021). https://doi.org/10.1007/s11801-021-0039-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-021-0039-0

Document code

Navigation